You are here

Gát György

Name: Gát György
Other profiles: MTMT
Degree
  • DSc, MTA (2009)

Publication list

Uploaded publications:
28
Publications in DEA:
28
OA:
2
Date range:
2015-2022
2022
  1. Gát, G., Goginava, U.: Cesàro means with varying parameters of Walsh-Fourier series.
    Period. Math. Hung. [Epub ahead of print]2022.
    Journal metrics:
    Q2 Mathematics (miscellaneous) (2021)
  2. Gát, G., Goginava, U.: The Walsh-Fourier Transform on the Real Line.
    J. Contemp. Math. Anal.-Armen. Aca. 57 (4), 205-214, 2022.
    Journal metrics:
    Q4 Analysis (2021)
    Q4 Applied Mathematics (2021)
    Q4 Control and Optimization (2021)
2021
  1. Anas, A., Gát, G.: Almost everywhere convergence of Cesáro means of two variable Walsh-Fourier series with varying parameters.
    Ukr. Math. J. 73 (3), 337-358, 2021.
    Journal metrics:
    Q2 Mathematics (miscellaneous)
  2. Gát, G., Lucskai, G.: Almost everywhere convergence of Riesz means of one-dimensional Fourier series on the group of 2-adic integers.
    Novi Sad J. Math. [Epub ahead of print] 1-14, 2021.
    Journal metrics:
    Q4 Mathematics (miscellaneous)
  3. Gát, G., Tilahun, A.: Multi-parameter setting (C,α) means with respect to one dimensional Vilenkin system.
    Filomat. 35 (12), 4121-4133, 2021.
    Journal metrics:
    Q2 Mathematics (miscellaneous)
2020
  1. Gát, G., Toledo, R.: Numerical solution of linear differential equations by Walsh polynomials approach.
    Stud. Sci. Math. Hung. 57 (2), 217-254, 2020.
    Journal metrics:
    Q3 Mathematics (miscellaneous)
  2. Gát, G., Tilahun, A.: On almost everywhere convergence of the generalized Marcienkiwicz means with respect to two dimensional Vilenkin-like systems.
    Miskolc Math. Notes. 21 (2), 823-840, 2020.
    Journal metrics:
    Q3 Algebra and Number Theory
    Q3 Analysis
    Q2 Control and Optimization
    Q3 Discrete Mathematics and Combinatorics
    Q3 Numerical Analysis
  3. Gát, G., Goginava, U.: Pointwise Strong Summability of Vilenkin-Fourier Series.
    Math. Notes. 108 (3-4), 499-510, 2020.
    Journal metrics:
    Q2 Mathematics (miscellaneous)
2019
  1. Gát, G.: Cesaro Means of Subsequences of Partial Sums of Trigonometric Fourier Series.
    Constr. Approx. 49 (1), 59-101, 2019.
    Journal metrics:
    Q2 Analysis
    Q2 Computational Mathematics
    Q2 Mathematics (miscellaneous)
  2. Gát, G., Goginava, U.: Convergence of a Subsequence of Triangular Partial Sums of Double Walsh-Fourier Series.
    J. Contemp. Math. Anal. 54 (4), 210-215, 2019.
    Journal metrics:
    Q4 Analysis
    Q4 Applied Mathematics
    Q4 Control and Optimization
  3. Gát, G., Lucskai, G.: Estimation on the Walsh-Fejer and Walsh logarithmic kernels.
    Publ. Math. Debr. 95 (3-4), 415-435, 2019.
    Journal metrics:
    Q2 Mathematics (miscellaneous)
  4. Gát, G., Goginava, U.: Maximal operators of Cesàro means with varying parameters of Walsh-Fourier series.
    Acta math. Hung. 159 (2), 653-668, 2019.
    Journal metrics:
    Q2 Mathematics (miscellaneous)
  5. Gát, G., Goginava, U.: Norm Convergence of Double Fejér Means on Unbounded Vilenkin Groups.
    Anal. Math. 45 (1), 39-62, 2019.
    Journal metrics:
    Q3 Analysis
    Q3 Mathematics (miscellaneous)
2018
  1. Gát, G.: Almost Everywhere Convergence of Fejér Means of Two-dimensional Triangular Walsh-Fourier Series.
    J. Fourier Anal. Appl. 24 (5), 1249-1275, 2018.
    Journal metrics:
    Q2 Analysis
    Q2 Applied Mathematics
    Q1 Mathematics (miscellaneous)
  2. Gát, G., Goginava, U.: Almost Everywhere Convergence of Subsequence of Quadratic Partial Sums of Two-Dimensional Walsh-Fourier Series.
    Anal. Math. 44 (1), 73-88, 2018.
    Journal metrics:
    Q2 Mathematics (miscellaneous)
  3. Anas, A., Gát, G.: Convergence of Cesáro means with varying parameters of Walsh-Fourier series.
    Miskolc Math. Notes. 19 (1), 303-317, 2018.
    Journal metrics:
    Q4 Algebra and Number Theory
    Q3 Analysis
    Q3 Control and Optimization
    Q4 Discrete Mathematics and Combinatorics
    Q3 Numerical Analysis
  4. Gát, G., Goginava, U.: Subsequences of triangular partial sums of double Fourier series on unbounded Vilenkin groups.
    Filomat. 32 (11), 3769-3778, 2018.
    Journal metrics:
    Q2 Mathematics (miscellaneous)
2017
  1. Gát, G., Goginava, U.: Norm convergence of double Fourier series on unbounded Vilenkin groups.
    Acta math. Hung. 152 (1), 201-216, 2017.
    Journal metrics:
    Q2 Mathematics (miscellaneous)
2016
  1. Gát, G., Goginava, U.: Almost everywhere convergence of dyadic triangular-Fejér means of two-dimensional Walsh-Fourier series.
    Math. Inequal. Appl. 19 (2), 401-415, 2016.
    Journal metrics:
    Q2 Applied Mathematics
    Q2 Mathematics (miscellaneous)
  2. Gát, G.: Marcinkiewicz-like means of two dimensional Vilenkin-Fourier series.
    Publ. Math. Debr. 89 (3), 331-346, 2016.
    Journal metrics:
    Q3 Mathematics (miscellaneous)
  3. Gát, G., Karagulyan, G.: On Convergence Properties of Tensor Products of Some Operator Sequences.
    J. Geom. Anal. 26 (4), 3066-3089, 2016.
    Journal metrics:
    D1 Geometry and Topology
Show all
updated: 2023-01-29, 02:10

SCImago quartiles of
scientific journal articles

Number of scientific articles: 28
Q1/D1 1 (3.6%)
Q1 3 (10.7%)
Q2 12 (42.9%)
Q3 5 (17.9%)
Q4 4 (14.3%)
N/A 4 (14.3%)
-
OK

SCImago subject areas and categories

Mathematics (24)
Mathematics (miscellaneous) (17)
Analysis (9)
Applied Mathematics (6)
Control and Optimization (4)
Algebra and Number Theory (2)
Discrete Mathematics and Combinatorics (2)
Numerical Analysis (2)
Computational Mathematics (1)
Geometry and Topology (1)
Social Sciences (1)
Education (1)

Genre chart

Year chart

Language chart

Other co-authors