Tudóstér: Száz Árpád publikációi

PDF
-
szűkítés
feltöltött közlemény: 148 Open Access: 18
2022
  1. Boros, Z., Iqbal, M., Száz, Á.: A relational improvement of a true particular case of Fierro's maximality theorem.
    Filomat. 36 7091-7101, 2022.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
  2. Rassias, T., Salih, M., Száz, Á.: Characterizations and Set Theoretic Properties of Some Generalized Open and Fat sets in Relator Spaces.
    In: Mathematical Analysis, Optimization, Approximation and Applications, World Scientific, Singapore, "Accepted by publisher", 1-96, 2022.
  3. Acharjee, S., Rassias, T., Száz, Á.: Galois and Pataki Connections for Ordinary Functions and Super Relations.
    Electronic Journal of Mathematics 4 46-99, 2022.
  4. Rassias, T., Száz, Á.: Ordinary, Super and Hyper Relators Can Be Used To Treat the Various Generalized Open Sets in a Unified Way.
    In: Approximation and Computation in Science and Engineering / N.J. Dars; Th.M. Rassias (Eds.), Springer Nature, Switzerland, 709-782, 2022. ISBN: 9783030841225
  5. Rassias, T., Salih, M., Száz, Á.: Set-theoretic Properties of Generalized Topologically Open Sets in Relator Spaces.
    In: Mathematical Analysis in Interdisciplinary Research, Springer, Natural Switzeland, 661-730, 2022.
  6. Száz, Á.: Super and hyper products of super relations.
    Tatra Mt. Math. Publ. 78 (1), 85-118, 2022.
    Folyóirat-mutatók:
    Q4 Mathematics (miscellaneous)
2021
  1. Rassias, T., Száz, Á.: A general framework for studying certain generalized topologically open sets in relator spaces.
    In: Nonlinear Analysis, Differential Equations, and Applications. Ed.: Themistocles M. Rassias, Springer Cham, Switzerland, 415-491, 2021. ISBN: 9783030725631
  2. Rassias, T., Száz, Á.: Basic tools and continuity-like properties in relator spaces.
    Contrib. Math. 3 77-106, 2021.
  3. Rassias, T., Salih, M., Száz, Á.: Characterizations of Generalized Topologically Open Sets in Relator Spaces.
    Montes Taurus J. Pure Appl. Math. 3 (3), 39-94, 2021.
2020
  1. Fechner, W., Száz, Á.: Composition iterates, Cauchy, translation, and Sincov inclusions.
    Acta Univ. Sapientiae, Mathematica. 12 (1), 54-84, 2020.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
  2. Salih, M., Száz, Á.: Generalizations of some ordinary and extreme connectedness properties of topological spaces to relator spaces.
    Electron. Res. Arch. 28 (1), 471-548, 2020.
2019
  1. Száz, Á.: Birelator spaces are natural generalizations of not only bitopological spaces, but also ideal topological spaces.
    In: Mathematical Analysis and Applications. Szerk.: Themistocles M. Rassias, Panos M. Pardalos, Springer International Publishing Ag, Cham, 543-586, 2019, (Springer Series in Optimization and its Applications, ISSN 1931-6828 ; 154) ISBN: 9783030313395
  2. Száz, Á.: Galois and Pataki Connections on Generalized Ordered Sets.
    EJMS. 2 283-323, 2019.
  3. Boros, Z., Száz, Á.: Infimum problems derived from the proofs of some generalized Schwarz inequalities.
    Teach. math. comput. sci. 17 (1), 41-57, 2019.
2018
  1. Száz, Á.: Generalizations of an asymptotic stability theorem of Bahyrycz, Páles and Piszczek on Cauchy differences to generalized cocycles.
    Stud. Univ. Babes-Bolyai Math. 63 (1), 109-124, 2018.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
  2. Száz, Á.: Generalizations of a restricted stability theorem of Losonczi on Cauchy differences to generalized cocycles.
    Scientia. Ser. A. Math. Sci. 28 29-42, 2018.
  3. Pasteczka, P., Száz, Á.: Integral part problems derived from a solution of an infimum problem.
    Teach. math. comput. sci. 16 (1), 43-53, 2018.
2017
  1. Boros, Z., Száz, Á.: Generalized Schwarz inequalitiesfor generalized semi-inner products on groupoidscan be derived from an equality.
    Novi Sad J. Math. 47 (1), 177-188, 2017.
    Folyóirat-mutatók:
    Q4 Mathematics (miscellaneous)
2016
  1. Száz, Á., Zakaria, A.: Mild Continuity Properties of Relations and Relators in Relator Spaces.
    In: Essays in Mathematics and its Applications. Ed.: Themistocles M. Rassias, Panos M. Pardalos, Springer International Publishing Ag, Cham, 439-511, 2016. ISBN: 9783319313368
  2. Száz, Á.: Two Natural Generalizations of Cocycles.
    J. Int. Math. Virt. Inst. 6 66-86, 2016.
2014
  1. Száz, Á.: A particular Galois connection between relations and set functions.
    Acta Universitatis Sapientiae: Mathematica. 6 73-91, 2014.
  2. Glavosits, T., Száz, Á.: Contructions and extensions of free and controlled additive relations.
    In: Handbook of functional equations. Ed.: Themistocles M Rassias, Springer Science+Business Media, New York, 161-208, 2014. ISBN: 9781493912452
  3. Glavosits, T., Száz, Á.: Divisible and cancellable subsets of groupoids.
    Ann. Math. Inform. 43 67-91, 2014.
    Folyóirat-mutatók:
    Q3 Computer Science (miscellaneous)
    Q4 Mathematics (miscellaneous)
  4. Száz, Á.: Generalizations of Galois and Pataki connections to relator spaces.
    J. Int. Math. Virtual Inst. 4 43-75, 2014.
2013
  1. Száz, Á.: An easy to remember, economic approach to the Riccati equation.
    Math. stud. 82 1-12, 2013.
  2. Száz, Á.: An extension of an additive selection theorem of Z. Gajda and R. Ger to vector relator spaces.
    Sci. Ser. A. Math. Sci. 24 33-54, 2013.
  3. Száz, Á.: An instructive treatment and some natural extensions of a set-valued function of Páles.
    Math. Pannon. 24 (1), 77-108, 2013.
  4. Száz, Á.: Inclusions for compositions and box products of relations.
    J. Int. Math. Virt. Inst. 3 97-125, 2013.
  5. Száz, Á.: Lower semicontinuity properties of relations in relator spaces.
    Adv. Stud. Contemp. Math. 23 107-158, 2013.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
2012
  1. Száz, Á.: A common generalization of the postman, radial and river metrics.
    Rostock. Math. Kolloq. 67 89-125, 2012.
  2. Száz, Á.: An instructive treatment of convergence, closure, and orthogonality in semi-inner product spaces.
    University of Debrecen, Institute of Mathematics and Informatics, Debrecen, 29 p., 2012.
  3. Száz, Á.: Galois-type connections and continuities of pairs of relations.
    J. Int. Math. Virt. Inst. 2 39-66, 2012.
  4. Száz, Á.: The Hyers-Ulam and Hahn-Banach theorems and some elementary operations on relations motivated by their set-valued generalizations.
    In: Nonlinear Analysis : Stability, Approximation, and Inequalities. Ed.: P. M. Pardalos, P. G. Georgiev, H. M. Srivastava, Springer, New York, 631-705, 2012, (Springer Optimization and Its Applications ; 68.) ISBN: 9781461434979
2011
  1. Glavosits, T., Száz, Á.: A Hahn-Banach type generalization of the Hyers-Ulam theorem.
    An. Şt. Univ. Ovidius Constanţa, Ser. Mat. 19 (1), 139-144, 2011.
    Folyóirat-mutatók:
    Q4 Analysis
    Q4 Applied Mathematics
  2. Száz, Á.: Sets and posets with inversions.
    Publ. Inst. Math. (Belgr.). 90 (104), 111-123, 2011.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  3. Száz, Á.: Set theoretic operations on box and totalization relations.
    Int. j. math. sci. appl. 1 (1), 19-41, 2011.
  4. Glavosits, T., Száz, Á.: The generalized infimal convolution can be used naturally prove some dominated monotone additive extension theorems.
    Ann. Math. Sil. 25 67-100, 2011.
2010
  1. Száz, Á.: An Altman type generalizations of ordering and maximality principles of the Brézis, Browder and Brøndsted.
    Adv. Stud. Contemp. Math. 20 595-620, 2010.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  2. Gselmann, E., Száz, Á.: An instructive treatment of a generalization of Găvruţă's stability theorem.
    Sarajevo j. math. 6 (18), 3-21, 2010.
  3. Száz, Á.: A relational reformulation of the Phelps-Cardwell lemma.
    University of Debrecen, Institute of Mathematics, Debrecen, 13 p., 2010.
  4. Glavosits, T., Száz, Á.: Constructions and extensions of free and controlled additive relations.
    University of Debrecen, Institute of Mathematics, Debrecen, 49 p., 2010.
  5. Száz, Á.: Foundations of the theory of vector relators.
    Adv. Stud. Contemp. Math. 20 139-195, 2010.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  6. Figula, Á., Száz, Á.: Graphical relationships between the infimum and intersection convolutions.
    Math. Pannon. 21 (1), 23-35, 2010.
  7. Száz, Á.: Inclusions on box and totalization relations.
    University of Debrecen, Institute of Mathematics, Debrecen, 8 p., 2010.
  8. Száz, Á.: Relation theoretic operations on box and totalization relations.
    University of Debrecen, Institute of Mathematics, Debrecen, 22 p., 2010.
  9. Száz, Á.: Set theoretic operations on box and totalization relations.
    University of Debrecen, Institute of Mathematics, Debrecen, 8 p., 2010.
  10. Glavosits, T., Száz, Á.: The generalized infimal convolution can be used to naturally prove some dominated monotone additive extension theorems.
    University of Debrecen, Institute of Mathematics, Debrecen, 26 p., 2010.
  11. Száz, Á.: The infimal convolution can be used to derive extension theorems from the sandwich ones.
    Acta Sci. Math. 76 (3-4), 489-499, 2010.
    Folyóirat-mutatók:
    Q3 Analysis
    Q3 Applied Mathematics
  12. Glavosits, T., Száz, Á.: The infimal convolution can be used to easily prove the classical Hahn-Banach theorem.
    Rostock. Math. Kolloq. 65 71-83, 2010.
  13. Száz, Á.: The intersection convolution of relations.
    Creat. math. inform. 19 (2), 209-217, 2010.
2009
  1. Buglyó, S., Száz, Á.: A more important Galois connection between distance functions and inequality relations.
    Sci. Ser. A. Math. Sci. 18 17-38, 2009.
  2. Száz, Á.: Applications of relations and relators in the extensions of stability theorems for homogeneous and additive functions.
    Aust. J. Math. Anal. Appl. 6 (1), 1-66, 2009.
    Folyóirat-mutatók:
    Q4 Analysis
    Q3 Applied Mathematics
  3. Száz, Á.: Galois-type connections and closure operations on preordered sets.
    Acta Math. Univ. Commen. 78 (1), 1-21, 2009.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
  4. Dascǎl, J., Száz, Á.: Inclusion properties of the intersection convolution of relations.
    Ann. Math. et Inf. 36 47-60, 2009.
    Folyóirat-mutatók:
    Q3 Computer Science (miscellaneous)
    Q4 Mathematics (miscellaneous)
  5. Száz, Á.: Relationships between the intersection convolution and other important operations on relations.
    Math. Pannon. 20 (1), 99-107, 2009.
2008
  1. Száz, Á.: An instructive treatment of a generalization of Hyers's stability theorem.
    In: Inequalities and Applications / Th. M. Rassias, A. Andrica (eds.), Cluj University Press, Cluj-Napoca, 245-271, 2008.
  2. Boros, Z., Száz, Á.: Infimum and supremum completeness properties of ordered sets without axioms.
    An. St. Univ. Ovidius Constanta, Ser. Mat. 16 (2), 31-37, 2008.
  3. Boros, Z., Száz, Á.: Reflexivity, transitivity, symmetry and anti-symmetry of the intersection convolution of relations.
    Rostock. Math. Kolloq. 63 55-62, 2008.
2007
  1. Száz, Á.: An improved Altman type generalization of the Brezis-Browder ordering principle.
    Math. commun. 12 155-161, 2007.
  2. Száz, Á.: Minimal structures, generalized topologies, and ascending systems should not be studied without generalized uniformities.
    Filomat. 21 (1), 87-97, 2007.
  3. Száz, Á.: Some easy to remember abstract forms of Ekeland's variational priciple and Caristi's fixed point theorem.
    Appl. Anal. Discrete Math. 1 335-339, 2007.
2006
  1. Száz, Á., Túri, J.: Comparisons and compositions of Galois-type connections.
    Miskolc. math. notes. 7 (2), 189-203, 2006.
  2. Száz, Á.: Supremum properties of Galois-type connections.
    Comment. math. Univ. Carolinae. 47 (4), 569-583, 2006.
2005
  1. Burai, P., Száz, Á.: Coincidence theorem for subadditive and superadditive functions.
    Carpathian J. of Math. 21 (1-2), 21-26, 2005.
    Folyóirat-mutatók:
    Q4 Mathematics (miscellaneous)
  2. Boros, Z., Száz, Á.: Finite and conditional completeness properties of generalized ordered sets.
    Rostock. Math. Kolloq. 59 75-86, 2005.
  3. Glavosits, T., Száz, Á.: General conditions for the subadditivity and superadditivity of relations.
    Scientia, Ser. A, Math. Sci. 11 31-43, 2005.
  4. Burai, P., Száz, Á.: Homogeneity properties of subadditive functions.
    Ann. Math. Inf. 32 189-201, 2005.
    Folyóirat-mutatók:
    Q4 Computer Science (miscellaneous)
    Q4 Mathematics (miscellaneous)
  5. Burai, P., Száz, Á.: Relationships between homogeneity, subadditivity and convexity properties.
    Publikacija Elektrotehnickog fakulteta. Serija Matematika 16 77-87, 2005.
2004
  1. Glavosits, T., Száz, Á.: Characterizations of commuting relations.
    Acta Math. Inform. Univ. Ostrav. 12 23-31, 2004.
  2. Glavosits, T., Száz, Á.: On the existence of nonnegativity domains of subsets of groups.
    Demonstr. Math. 37 505-516, 2004.
  3. Glavosits, T., Száz, Á.: On the existence of odd selections.
    Adv. Stud. Contemp. Math. 8 155-164, 2004.
  4. Glavosits, T., Száz, Á.: Pointwise and global sums and negatives of translation relations.
    An. Şt. Univ. Ovidius Constanţa, Ser. Mat. 12 27-44, 2004.
  5. Száz, Á.: Rare and meager sets in relator spaces.
    Tatra Mt. Math. Publ. 28 75-95, 2004.
2003
  1. Száz, Á.: An extension of Baire's category theorem to relator spaces.
    Math. Morav. 7 73-89, 2003.
  2. Pataki, G., Száz, Á.: A unified treatment of well-chainedness and connectedness properties.
    Acta Math. Acad. Paedagog. Nyíregyh. 19 101-165, 2003.
    Folyóirat-mutatók:
    Q4 Education
    Q4 Mathematics (miscellaneous)
  3. Glavosits, T., Száz, Á.: Decompositions of commuting relations.
    Acta Math. Inform. Univ. Ostrav. 11 (1), 25-28, 2003.
  4. Száz, Á.: Linear extensions of relations between vector spaces.
    Comment. math. Univ. Carolinae. 44 (2), 367-385, 2003.
  5. Száz, Á., Túri, J.: Pointwise and global sums and negatives of odd and additive relations.
    Octogon. 11 114-125, 2003.
  6. Száz, Á.: Relationships between translation and additive relations.
    Acta Acad. Paed. Agr., Sect. Math. 30 179-190, 2003.
  7. Rakaczki, C., Száz, Á.: Semicontinuity and closedness properties of relations in relator spaces.
    Mathematica (Cluj). 45 (1), 73-92, 2003.
  8. Száz, Á.: Upper and lower bounds in relator spaces.
    Serdika Math. J. 29 239-270, 2003.
2002
  1. Száz, Á.: A Galois connection between distance functions and inequality relations.
    Math. Bohem. 127 437-448, 2002.
  2. Száz, Á., Túri, J.: Characterizations of injective multipliers on partially ordered sets.
    Stud. Univ. Babeş-Bolyai, Math. 47 105-119, 2002.
  3. Száz, Á.: Partial multipliers on partially ordered sets.
    Novi Sad J. Math. 32 (1), 25-45, 2002.
  4. Glavosits, T., Száz, Á.: Pointwise and global sums and negatives of binary relations.
    An. Şt. Univ. Ovidius Constanţa, Ser. Mat. 10 (1), 87-93, 2002.
  5. Kovács, I., Száz, Á.: Schauder bases in an abstract setting.
    Rev. colomb. mat. 36 29-48, 2002.
  6. Száz, Á.: Somewhat continuity in a unified framework for continuities of relations.
    Tatra Mt. Math. Publ. 24 41-56, 2002.
2001
  1. Száz, Á.: An Altman-type generalization of the Brezis-Browder ordering principle.
    Math. Morav. 5 1-6, 2001.
  2. Kovács, I., Száz, Á.: Characterizations of effective sets and nonexpansive multipliers in conditionally complete and infinitely distributive partially ordered sets.
    Acta Math. Acad. Paedagog. Nyíregyh. 172001.
    Folyóirat-mutatók:
    Q4 Education
    Q4 Mathematics (miscellaneous)
  3. Pataki, G., Száz, Á.: Characterizations of nonexpansive multipliers on partially ordered sets.
    Math. Slovaca. 51 (4), 371-382, 2001.
  4. Száz, Á.: Preseminorm generating relations and their Minkowski functionals.
    Publ. Elektrotehn. Fak., Ser. Mat., Univ. Beogr. 12 16-34, 2001.
2000
  1. Száz, Á.: An extensionof Kelley's closed relation theorem to relator spaces.
    Filomat. 14 49-71, 2000.
  2. Farkas, T., Száz, Á.: Minlowski functionals of summative sequences of absorbing and balanced sets.
    Bul. şiinţ. - Univ. Baia Mare, B, Fasc. mat.-inform. 16 323-334, 2000.
  3. Száz, Á., Túri, J.: Seminorm generating relations and their Minkowski functionals.
    Acta Math. Acad. Paedagog. Nyíregyh. 16 15-24, 2000.
    Folyóirat-mutatók:
    Q4 Education
    Q4 Mathematics (miscellaneous)
  4. Száz, Á.: Translation relations, the building blocks of compatible relators.
    Mat. Montisnigri. 12 135-156, 2000.
1999
  1. Boros, Z., Száz, Á.: Some number-theoretic applications of the smallest denominator function.
    Acta Math. Acad. Paedagog. Nyíregyh. 15 19-26, 1999.
    Folyóirat-mutatók:
    Q4 Education
    Q4 Mathematics (miscellaneous)
1998
  1. Száz, Á.: Oscillation and integration characterizations of bounded a.e. continuous functions.
  2. Száz, Á.: The intersection convolution of relations and the Hahn-Banach type theorems.
  3. Boros, Z., Száz, Á.: The smallest denominator function and the Riemann function.
    Acta Math. Acad. Paedagog. Nyíregyh. 14 1-17, 1998.
1997
  1. Száz, Á.: An extension of Kelley's closed relation theorem to relator spaces.
    Department of Mathematics and Informatics Lajos Kossuth University, Debrecen, 23 p., 1997.
  2. Mala, J., Száz, Á.: Modifications of relators.
    Acta Math. Hung. 77 (1-2), 69-81, 1997.
  3. Száz, Á.: Moduli of continuity and spaces of functions.
  4. Száz, Á., Rakaczki, C.: Semicontinuity and closedness properties of relations in relator spaces.
    Department of Mathematics and Informatics Lajos Kossuth University, Debrecen, 23 p., 1997.
  5. Száz, Á.: The intersection convolution of relations and the Hahn-Banach type theorems.
    Department of Mathematics and Informatics Lajos Kossuth University, Debrecen, 17 p., 1997.
  6. Száz, Á.: Uniformly, proximally and topologically compact relators.
1996
  1. Száz, Á.: A Lagrange-type increment inequality.
  2. Száz, Á.: Connectedness of refined relators.
    Department of Mathematics and Informatics Lajos Kossuth University, Debrecen, 6 p., 1996.
  3. Száz, Á.: Moduli of continuity and spaces of functions.
    Department of Mathematics and Informatics Lajos Kossuth University, Debrecen, 10 p., 1996.
  4. Száz, Á.: Topological characterizations of relational properties.
    Grazer math. Ber. 327 37-52, 1996.
  5. Száz, Á.: Uniformly, proximally and topologically compact relators.
    Department of Mathematics and Informatics Lajos Kossuth University, Debrecen, 13 p., 1996.
1995
  1. Száz, Á.: A Cauchy's mean value theorem for complex functions.
    Math. 64 (1-4), 125-127, 1995.
  2. Száz, Á., Boros, Z.: A legkisebb nevezőjű függvény további alkalmazásai.
    Department of Mathematics and Informatics Lajos Kossuth University, Debrecen, 7 p., 1995.
  3. Száz, Á., Boros, Z.: Függvények, amelyeknek a Riemann-függvényt meg kellene előzniük.
    Department of Mathematics and Informatics Lajos Kossuth University, Debrecen, 17 p., 1995.
  4. Száz, Á.: Integration of a. e. continuous functions in metric premeasure spaces I.
    Department of Mathematics and Informatics Lajos Kossuth University, Debrecen, 39 p., 1995.
  5. Száz, Á.: Neighbourhood relators.
    In: Topology with applications. Ed.: Ákos Császár, Bolyai János Matematikai Társulat, Budapest, 449-465, 1995, (Bolyai Society Mathematical Studies ; 4.)
1994
  1. Száz, Á.: Elemi módon megoldható differenciálegyenletek.
    Kossuth Lajos Tudományegyetem, Debrecen, 40 p. ;, 1994.
  2. Száz, Á.: Hatványozás és elemi függvények.
    Kossuth Lajos Tudományegyetem, Debrecen, 1994.
1993
  1. Száz, Á.: A Lagrange-type increment inequality.
    In: 13. Österreichischer Mathematikerkongress, 20-24 September 1993
  2. Száz, Á.: Cauchy nets and completeness in relator spaces.
    Colloquia mathematica societatis Janos Bolyai 55 479-489, 1993.
  3. Száz, Á., Mala, J.: Modifications of relators.
    Department of Mathematics and Informatics Lajos Kossuth University, Debrecen, 1993.
  4. Száz, Á.: Neighbourhood relators.
    In: Colloquium on Topology János Bolyai Math. Soc., Aug. 23-27, 1993
  5. Száz, Á., Mala, J.: Properly topologically conjugated relators.
    Pure math. appl., Ser. B. 3 119-136, 1993.
  6. Száz, Á.: Refinements of relators.
    Department of Mathematics and Informatics Lajos Kossuth University, Debrecen, 1993.
  7. Száz, Á.: The fundamental theorem of calculus in an abstract setting.
    Tatra Mt. Math. Publ. 2 167-174, 1993.
  8. Száz, Á., Kurdics, J.: Well-chainedness characterizations of connected relators.
    Math. Pannon. 4 37-45, 1993.
1992
  1. Kurdics, J., Száz, Á.: Connected relator spaces.
    Publ. Math. Debrecen. 40 (1-2), 1992.
  2. Száz, Á.: Inverse and symmetric relators.
    Acta Math. Hung. 60 (1-2), 157-176, 1992.
  3. Száz, Á.: Structures derivable from relators.
    Singularité 3 (8), 14-30, 1992.
  4. Száz, Á.: Unique Fréchet derivatives at some non-isolated points.
    Math. Student 1992.
  5. Kurdics, J., Száz, Á.: Well-chained relator spaces.
    Kyungpook Math. J. 32 (2), 263-271, 1992.
1991
  1. Száz, Á.: Bounded nets in preseminormed spaces.
    Period. Math. Hung. 23 (3), 211-218, 1991.
  2. Száz, Á.: Mild continuities of linear relations.
    Publ. Math. Debrecen. 38 6-7, 1991.
  3. Száz, Á.: Pointwise limits of nets of multilinear maps.
  4. Száz, Á.: The fat and dense sets are more important than the open and closed ones.
1990
  1. Száz, Á.: An application of an implicit function theorem to a partial differential equation.
  2. Pintér, Á., Száz, Á.: Elemi módon megoldható Cauchy- és Goursat-feladatok.
    Acta Math. Acad. Paedagog. Nyíregyh. 12/d 61-71, 1990.
  3. Mala, J., Száz, Á.: Equations for families of relations can also be solved.
  4. Száz, Á.: Lebesgue relations.
    Monatsh. Math. 110 (3-4), 315-319, 1990.
  5. Száz, Á.: Refined relators.
1989
  1. Száz, Á.: An application of an implicit function theorem to a partial differential equation..
  2. Szabó, G., Száz, Á.: Defining nets for integration.
    Publ. Math. Debr. 36 (2), 237-252, 1989.
  3. Száz, Á.: Projective and inductive generations of relator spaces.
1986
  1. Páles, Z., Száz, Á.: A Hahn-Banach-féle invariáns kiterjesztési tétel is élesíthető.
    Mat. Lapok. 33 (1-3), 35-37, 1986.
  2. Száz, Á.: Generalized preseminormed spaces of linear manifolds and bounded linear relations.
    Rev. Res. Fac. Sci. Math 14 49-78, 1986.
  3. Száz, Á.: Mild continuities of linear relations.
    In: 3rd International Symposium on Functional Equations and Inequalities, Noszvaj, Hungary, 1986
1985
  1. Száz, Á., Száz, Á.: Continuities in relator speces.
    In: Abstracts of the International conference on generalized functions : November 4-9, 1984. Debrecen ... / [org., publ. by the] Institute of Mathematics Lajos Kossuth University, KLTE, Debrecen, 53-54, 1984 [1985].
1980
  1. Száz, Á., Száz, G.: Absolutely linear relations.
    Aequ. Math. 21 (1), 8-15, 1980.
1975
  1. Száz, Á.: Convolution multipliers and distributions.
    Pacific J. Math. 60 (2), 267-275, 1975.
feltöltött közlemény: 148 Open Access: 18
https://tudoster.idea.unideb.hu
A szolgáltatást nyújtja: DEENK