Tudóstér: Fazekas István publikációi

PDF
-
szűkítés
feltöltött közlemény: 96 Open Access: 26
2024
  1. Fazekas, I., Fazekas, B., Suja, M.: A limit theorem for runs containing two types of contaminations.
    Period. Math. Hung. 2024 1-16, 2024.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous) (2023)
  2. Fazekas, I., Fazekas, B., Suja, M.: Convergence rate for the longest T-contaminated runs of heads.
    Stat. Probab. Lett. 208 1-8, 2024.
    Folyóirat-mutatók:
    Q3 Statistics and Probability (2023)
    Q3 Statistics, Probability and Uncertainty (2023)
  3. Fazekas, I., Fazekas, B., Suja, M.: Limit theorems for runs containing two types of contaminations.
    Period. Math. Hung. [Accepted by publisher] (-), 1-25, 2024.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous) (2023)
2023
  1. Fazekas, I., Barta, A., Noszály, C., Porvázsnyik, B.: A continuous-time network evolution model describing 3-interactions.
    Commun. Stat.-Theory Methods. 52 (11), 4001-4020, 2023.
    Folyóirat-mutatók:
    Q3 Statistics and Probability
  2. Fazekas, I., Fórián, L., Barta, A.: Deep Learning from Noisy Labels with Some Adjustments of a Recent Method.
    Infocommun. J. 15 (Special), 9-12, 2023.
    Folyóirat-mutatók:
    Q3 Computer Science (miscellaneous)
    Q3 Electrical and Electronic Engineering
2022
  1. Fazekas, I.: 2022 IEEE 2nd Conference on Information Technology and Data Science (CITDS): Proceedings: May 16-18, 2022. : Online on CISCO Webex platform.
    Institute of Electrical and Electronics Engineers (IEEE), Piscataway, 337 p., 2022. ISBN: 9781665496537
  2. Čuprunov, A., Fazekas, I.: On the Numbers of Particles in Cells in an Allocation Scheme Having an Even Number of Particles in Each Cell.
    Mathematics. 10 1-22, 2022.
    Folyóirat-mutatók:
    Q2 Computer Science (miscellaneous)
    Q2 Engineering (miscellaneous)
    Q2 Mathematics (miscellaneous)
2021
  1. Fazekas, I., Barta, A.: A Continuous-Time Network Evolution Model Describing 2- and 3-Interactions.
    Mathematics. 9 (23), 1-26, 2021.
    Folyóirat-mutatók:
    Q2 Computer Science (miscellaneous)
    Q2 Engineering (miscellaneous)
    Q2 Mathematics (miscellaneous)
  2. Fazekas, I., Barta, A., Fórián, L.: Ensemble noisy label detection on MNIST.
    Ann. Math. Inform. 53 125-137, 2021.
    Folyóirat-mutatók:
    Q3 Computer Science (miscellaneous)
    Q4 Mathematics (miscellaneous)
  3. Fazekas, I., Suja, M.: Limit theorems for contaminated runs of heads.
    Ann. Univ. Sci. Budapest, Sect. Comp. 52 131-146, 2021.
  4. Fazekas, I., Barta, A.: Theoretical and simulation results for a 2-type network evolution model.
    In: Proceedings of the 1st Conference on Information Technology and Data Science. Ed.: István Fazekas, András Hajdu, Tibor Tómács, CEUR Workshop Proceedings, Debrecen, 104-114, 2021, (CEUR Workshop Proceedings, ISSN 1613-0073 ; 2874.)
2020
  1. Fazekas, I., Pecsora, S.: Numerical results on noisy blown-up matrices.
    Ann. Math. Inform. 51 17-28, 2020.
    Folyóirat-mutatók:
    Q4 Computer Science (miscellaneous)
    Q4 Mathematics (miscellaneous)
  2. Čuprunov, A., Fazekas, I.: On the number of empty cells in the allocation scheme of indistinguishable particles.
    Annales Universitatis Mariae Curie-Sklodowska A Math. 74 (1), 15-29, 2020.
  3. Fazekas, I., Pecsora, S.: On the spectrum of noisy blown-up matrices.
    Special Matrices. 8 (1), 104-122, 2020.
    Folyóirat-mutatók:
    Q2 Algebra and Number Theory
    Q2 Geometry and Topology
  4. Fazekas, I., Barta, A., Noszály, C.: Simulation results on a triangle-based network evolution model.
    Ann. Math. Inform. 51 7-15, 2020.
    Folyóirat-mutatók:
    Q4 Computer Science (miscellaneous)
    Q4 Mathematics (miscellaneous)
2019
  1. Čuprunov, A., Fazekas, I.: Poisson limit theorems for the generalized allocation scheme.
    Ann. Univ. Sci. Budapest, Sect. Comp. 49 77-96, 2019.
  2. Fazekas, I., Noszály, C., Uzonyi, N.: Taylor's power law for the N-stars network evolution model.
    Mod. Stoch.: Theory App. 6 (3), 311-331, 2019.
    Folyóirat-mutatók:
    Q3 Modeling and Simulation
    Q4 Statistics and Probability
    Q3 Statistics, Probability and Uncertainty
  3. Fazekas, I., Noszály, C., Perecsényi, A.: The N-star network evolution model.
    J. Appl. Probab. 56 (2), 416-440, 2019.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
    Q2 Statistics and Probability
    Q3 Statistics, Probability and Uncertainty
2018
  1. Fazekas, I., Noszály, C., Perecsényi, A.: A population evolution model and its applications to random networks.
    Stat. Probab. Lett. 143 17-27, 2018.
    Folyóirat-mutatók:
    Q3 Statistics and Probability
    Q3 Statistics, Probability and Uncertainty
  2. Fazekas, I., Pecsora, S., Porvázsnyik, B.: General theorems on exponential and Rosenthal's inequalities and on complete convergence.
    J. Math. Inequal. 12 (2), 433-446, 2018.
    Folyóirat-mutatók:
    Q3 Analysis
  3. Fazekas, I., Perecsényi, A.: Scale-free property of the weights in a random graph model.
    Ann. Math. Inform. 48 15-22, 2018.
    Folyóirat-mutatók:
    Q3 Computer Science (miscellaneous)
    Q4 Mathematics (miscellaneous)
  4. Fazekas, I., Čuprunov, A.: The conditional maximum of Poisson random variables.
    Commun. Stat.-Theory Methods. 47 (16), 3857-3870, 2018.
    Folyóirat-mutatók:
    Q3 Statistics and Probability
2017
  1. Fazekas, I., Matula, P., Ziemba, M.: A note on the weighted strong law of large numbers under general conditions.
    Publ. Math. Debr. 90 (3-4), 373-386, 2017.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
  2. Fazekas, I., Pecsora, S.: General Bahr-Esseen inequalities and their applications.
    J. Inequal. Appl. 2017 1-16, 2017.
    Folyóirat-mutatók:
    Q3 Analysis
    Q2 Applied Mathematics
    Q3 Discrete Mathematics and Combinatorics
  3. Fazekas, I., Perecsényi, A., Porvázsnyik, B.: Numerical analysis of a network evolution model.
    In: 8th IEEE International Conference on Cognitive Infocommunications : CogInfoCom 2017 : Proceedings : September 11-14, 2017 Debrecen, Hungary, IEEE Computer Society, Piscataway, 171-174, 2017. ISBN: 9781538612644
2016
  1. Christofides, T., Fazekas, I., Hadjikyriakou, M.: Conditional acceptability of random variables.
    J. Inequal. Appl. 2016 (1), 1-18, 2016.
    Folyóirat-mutatók:
    Q2 Analysis
    Q2 Applied Mathematics
    Q2 Discrete Mathematics and Combinatorics
  2. Fazekas, I., Perecsényi, A.: Evolution of a generalized population model.
    In: The Publications of the MultiScience XXX. microCAD International Multidisciplinary Scientific Conference, Miskolci Egyetem, Miskolc, 1-4, 2016. ISBN: 9789633581131
  3. Fazekas, I., Porvázsnyik, B.: Limit theorems for the weights and the degrees in an N-interactions random graph model.
    Open Math. 14 (1), 414-424, 2016.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  4. Fazekas, I., Porvázsnyik, B.: Scale-free property for degrees and weights in an N-interactions random graph model.
    J. Math. Sci. NY. 214 (1), 69-82, 2016.
    Folyóirat-mutatók:
    Q4 Applied Mathematics
    Q3 Mathematics (miscellaneous)
    Q4 Statistics and Probability
2015
  1. Fazekas, I., Pecsora, S.: A generalization of the Barabási-Albert random tree.
    Ann. Math. Inform. 44 71-85, 2015.
    Folyóirat-mutatók:
    Q4 Computer Science (miscellaneous)
    Q4 Mathematics (miscellaneous)
  2. Szabó, G., Fazekas, I., Szabó, S., Enyedi, P., Szabó, G., Fazekas, I., Buday, T., Kerényi, A., Paládi, M., Mecser, N.: Preliminary results on the determination of solar energy potential using LiDAR technology.
    Int. rev. appl. sci. eng. 6 (1), 11-17, 2015.
  3. Fazekas, I., Porvázsnyik, B.: Some limit theorems for generalized allocation schemes.
    Miskolc Math. Notes. 16 (2), 817-832, 2015.
    Folyóirat-mutatók:
    Q4 Algebra and Number Theory
    Q4 Analysis
    Q4 Control and Optimization
    Q4 Discrete Mathematics and Combinatorics
    Q3 Numerical Analysis
  4. Fazekas, I., Noszály, C., Perecsényi, A.: Weights of Cliques in a Random Graph Model Based on Three-Interactions.
    Lith. Math. J. 55 (2), 207-221, 2015.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
2014
  1. Fazekas, I.: On a General Approach to the Strong Laws of Large Numbers.
    J. Math. Sci. 200 (4), 411-423, 2014.
    Folyóirat-mutatók:
    Q4 Applied Mathematics
    Q3 Mathematics (miscellaneous)
    Q4 Statistics and Probability
  2. Čuprunov, A., Fazekas, I.: Strong limit theorems in the multi-color generalized allocation scheme.
    Publ. Math. Debr. 85 (3-4), 361-372, 2014.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  3. Szabó, G., Szabó, G., Fazekas, I., Buday, T., Kerényi, A., Paládi, M., Mecser, N., Szabó, S.: Utilization of solar energy potential on roofs: building extraction from the LiDAR database in a Hungarian sample area.
    WIT Transactions on Ecology and the Environment. 186 197-205, 2014.
2013
  1. Fazekas, I., Porvázsnyik, B.: Scale-free property for degrees and weights in a preferential attachment random graph model.
    In: Book of Abstracts ASMDA2013 15th Applied Stochastic Models and Data Analysis International Conference / Christos H. Skiadas, ISAST: International Society for the Advancement of Science and Technology, Barcelona, Spanyolország, 79-80, 2013. ISBN: 9786188069824
  2. Fazekas, I., Porvázsnyik, B.: Scale-free property for degrees and weights in a preferential attachment random graph model.
    J. Probab. Statist. 2013 707960-[12], 2013.
    Folyóirat-mutatók:
    Q4 Statistics and Probability
  3. Fazekas, I., Porvázsnyik, B.: Scale-free property for degrees and weights in a preferential attachment random graph model.
    In: The Publications of the XXVII. microCAD International Scientific Conference (CD-ROM) [elektronikus dokumentum]. Közread.: University of Miskolc, Miskolci Egyetem, Miskolc, [3], 2013. ISBN: 9789633580189
  4. Fazekas, I., Porvázsnyik, B.: Scale-Free Property in a Random Graph Model Based on N-Interactions.
    In: Abstracts of the 29-th European Meeting of Statisticians. Ed.: Márkus László, Prokaj Vilmos, Eötvös Loránd University, Budapest, 244-245, 2013.
2012
  1. Fazekas, I., Karácsony, Z., Vas, R.: A Central Limit Theorem for Spatial Observations.
    Austrian Journ. of Stat. 41 (3), 227-239, 2012.
  2. Fazekas, I., Porvázsnyik, B.: A generalized allocation scheme.
    Ann. Math. Inf. 39 57-70, 2012.
    Folyóirat-mutatók:
    Q3 Computer Science (miscellaneous)
    Q4 Mathematics (miscellaneous)
  3. Fazekas, I., Túri, J.: A Limit Theorem for Random Allocations.
    J. of Math. Res. 4 (1), 17-20, 2012.
  4. Čuprunov, A., Fazekas, I.: An analogue of the generalised allocation scheme: limit theorems for the number of cells containing a given number of particles.
    Discrete Mathematics and Applications. 22 (1), 101-122, 2012.
    Folyóirat-mutatók:
    Q4 Applied Mathematics
    Q4 Discrete Mathematics and Combinatorics
  5. Fazekas, I., Karácsony, Z., Vas, R.: Joint asymptotic normality of the kernel type density estimator for spatial observations.
    Ann. Math. Inf. 39 45-56, 2012.
    Folyóirat-mutatók:
    Q3 Computer Science (miscellaneous)
    Q4 Mathematics (miscellaneous)
  6. Fazekas, I.: Merging to Semistable Processes.
    Theory Probab. Appl. 56 (4), 621-633, 2012.
    Folyóirat-mutatók:
    Q3 Statistics and Probability
    Q3 Statistics, Probability and Uncertainty
  7. Fazekas, I., Tómács, T.: On weighted averages of double sequences.
    Ann. Math. et Inf. 39 71-81, 2012.
2011
  1. Fazekas, I.: A random walk on the plane.
    Ann. Univ. Sci. Bp. Rolando Eötvös Nomin., Sect. math.. 54 97-102, 2011.
  2. Fazekas, I., Čuprunov, A., Túri, J.: Inequalities and limit theorems for random allocations.
    Ann. Univ. Mariae Curie-Skłodowska. Sect. A. 65 (1), 69-85, 2011.
  3. Kukush, A., Baran, S., Fazekas, I., Usoltseva, E.: Simultaneous estimation of baseline hazard rate and regression parameters in Cox proportional hazards model with measurement error.
    J. Stat. Res. 45 (2), 77-94, 2011.
2010
  1. Fazekas, I., Karácsony, Z., Libor, J.: A leghosszabb szériák vizsgálata.
    Alkalm. mat. l. 27 (2), 135-156, 2010.
  2. Čuprunov, A., Fazekas, I.: An exponential inequality and strong limit theorems for conditional expectations.
    Period. Math. Hung. 61 (1-2), 103-120, 2010.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
  3. Čuprunov, A., Fazekas, I.: An inequality for moments and its applications to the generalized allocation scheme.
    Publ. Math., Debrecen. 76 (3), 271-286, 2010.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  4. Fazekas, I., Karácsony, Z., Libor, Z.: Longest runs in coin tossing: comparison of recursive formulae, asymptotic theorems, computer simulations..
    Acta Univ. Sap., Math. 2 (2), 215-228, 2010.
2009
  1. Čuprunov, A., Fazekas, I.: An inequality for moments of conditional expectation of random variables and its applications.
    In: International Conference Probability and Statistics with Applications Dedicated to the 100th anniversary of the birthday of Béla Gyires. Abstracts. [elektronikus dokumentum]. Honorary Conference Chairs:: Mátyás Arató, Zoltán Daróczy, Kálmán Győry, Attila Pethő, Debreceni Egyetem TEK Informatikai Kar, Debrecen, [1], 2009.
  2. Fazekas, I., Karácsony, Z., Libor, Z.: Longest runs in coin tossing: Recursive formulae, asymptotic theorems, computer simulations.
    In: International Conference Probability and Statistics with Applications Dedicated to the 100th anniversary of the birthday of Béla Gyires. Abstracts. [elektronikus dokumentum]. Honorary Conference Chairs:: Mátyás Arató, Zoltán Daróczy, Kálmán Győry, Attila Pethő, Debreceni Egyetem TEK Informatikai Kar, Debrecen, [1], 2009.
  3. Čuprunov, A., Fazekas, I.: Strong laws of large numbers for random forests.
    Acta Math. Hung. 124 (1-2), 59-71, 2009.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
2007
  1. Fazekas, I., Čuprunov, A.: An almost sure functional limit theorem for the domain of geometric partial attraction of semistable laws.
    J. Theor. Prob. 20 (2), 339-353, 2007.
    Folyóirat-mutatók:
    Q1 Mathematics (miscellaneous)
    Q2 Statistics and Probability
    Q2 Statistics, Probability and Uncertainty
2006
  1. Fazekas, I., Filzmoser, P.: A Functional Central Limit Theorem for Kernel Type Density Estimators.
    Austrian Journ. of Stat. 35 (4), 409-418, 2006.
  2. Fazekas, I., Čuprunov, A.: Asymptotic Normality of Kernel Type Density Estimators for Random Fields.
    Stat Infer Stoch Process. 9 (2), 161-178, 2006.
    Folyóirat-mutatók:
    Q4 Statistics and Probability
  3. Antal, P., Fazekas, I., Bátfai, N., Jeszenszky, P.: The mobiDIÁK Educational Portal.
    J. Univers. Comput. Sci. 12 (9), 1118-1127, 2006.
    Folyóirat-mutatók:
    Q2 Computer Science (miscellaneous)
    Q3 Theoretical Computer Science
2005
  1. Fazekas, I., Čuprunov, A.: Almost sure limit theorems for random allocations.
    Stud. Sci. Math. Hung. 42 (2), 173-194, 2005.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
  2. Čuprunov, A., Fazekas, I.: Integral analogues of almost sure limit theorems.
    Period. Math. Hung. 50 (1-2), 61-78, 2005.
    Folyóirat-mutatók:
    Q4 Mathematics (miscellaneous)
2002
  1. Fazekas, I., Rychlik, Z.: Almost sure functional limit theorems.
    Ann. Univ. Mariae Curie-Sklodowska. Sect. A. Math. 56 (1), 1-18, 2002.
  2. Arató, M., Fazekas, G., Fazekas, I., Pap, G., Kormos, J.: In memory of Béla Gyires: (March 29, 1909-August 26, 2001).
    Publ. Math. Debrecen. 60 (3-4), 236-238, 2002.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
2000
  1. Fazekas, I., Baran, S., Glevitzky, B., Iglói, E., Ispány, M., Kalmár, I., Nagy, M., Tar, L., Verdes, E.: Bevezetés a matematikai statisztikába.
    Kossuth Egyetemi Kiadó, Debrecen, 523 p., 2000.
  2. Fazekas, I.: Valószínűségszámítás.
    Kossuth Egyetemi Kiadó, Debrecen, 298 p., 2000.
1999
  1. Čuprunov, A., Fazekas, I.: Almost sure versions of some analogues of the invariance principle.
    Publ. Math.-Debr. 54 (3-4), 457-471, 1999.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
  2. Fazekas, I., Baran, S., Kukush, A., Lauridsen, J.: Asymptotic properties in space and time of an estimator in nonlinear functional errors-in-variables models.
    Random Oper. & Stoch. Equ. 7 (4), 389-412, 1999.
    Folyóirat-mutatók:
    Q4 Analysis
    Q3 Statistics and Probability
  3. Fazekas, I., Baran, S., Lauridsen, J.: Asymptotic properties of an estimator in errors-in-variables models in the presence of validation data.
    Comput. Math. Appl. 38 (5), 31-39, 1999.
    Folyóirat-mutatók:
    Q3 Computational Mathematics
    Q2 Computational Theory and Mathematics
    Q2 Modeling and Simulation
  4. Fazekas, I., Lauridsen, J.: On the Lagrange multiplier test for spatial correlation in econometric models.
    J. Math. Sci. 93 (4), 515-520, 1999.
    Folyóirat-mutatók:
    Q3 Applied Mathematics
    Q3 Mathematics (miscellaneous)
    Q4 Statistics and Probability
1998
  1. Fazekas, I., Kukush, A.: Asymptotic properties of estimators in nonlinear functional errors-in-variables with dependent error terms.
    J. Math. Sci. 92 (3), 3890-3895, 1998.
  2. Fazekas, I.: Bevezetés a matematikai statisztikába.
    Kossuth Lajos Tudományegyetem Matematikai és Informatikai Intézet, Debrecen, 523 p., 1998.
  3. Čuprunov, A., Fazekas, I.: Convergence of random step lines to Ornstein-Uhlenbeck-type processes.
    J. Math. Sci. 92 (3), 3881-3889, 1998.
  4. Fazekas, I.: Statisztika.
    In: MATLAB 4. és 5. verzió : numerikus módszerek, grafika, statisztika, eszköztárak, Typotext, Budapest, 168-192, 1998.
  5. Fazekas, I., Tómács, T.: Strong laws of large numbers for pairwise independent random variables with multidimensional indices.
    Publ. Math. Debr. 53 (1-2), 149-161, 1998.
1997
  1. Fazekas, I., Kukush, A.: Asymptotic properties of an estimator in nonlinear functional errors-in-variables models with dependent error terms.
    Comp. math. appl. 34 (10), 23-39, 1997.
  2. Fazekas, I., Baran, S., Glevitzky, B., Iglói, E., Ispány, M., Kalmár, I., Nagy, M., Tar, L., Verdes, E.: Bevezetés a matematikai statisztikába.
    Kossuth Egyetemi Kiadó, Debrecen, 523 p., 1997.
  3. Fazekas, I., Baran, S., Lauridsen, J.: Estimators and tests in some regression models.
    In: Proceedings of the 3rd international conference on applied informatics, Eger-Noszvaj, Hungary August 24-28, 1997. Szerk.: Kovács Emőd, Kovács Zsolt, Csertő Balázs, Pépei László, EKTF, Eger, 59-68, 1997.
1996
  1. Fazekas, I.: A note on so called 'optimal measures'.
    Department of Mathematics and Informatics Lajos Kossuth University, Debrecen, 4 p., 1996.
  2. Fazekas, I., Kukush, A.: Asymptotic properties of an estimator in non-linear functional errors-in-variables models.
    Department of Mathematics and Informatics Lajos Kossuth University, Debrecen, 20 p., 1996.
  3. Fazekas, I., Čuprunov, A.: Convergence of random step lines to Ornstein-Uhlenbeck type processes.
    Department of Mathematics and Informatics Lajos Kossuth University, Debrecen, 15 p., 1996.
  4. Fazekas, I., Kukush, A.: On inconsistency of the least squares estimator in non-linear functional errors-in-variables models with dependent error terms.
    Department of Mathematics and Informatics Lajos Kossuth University, Debrecen, 19 p., 1996.
  5. Fazekas, I., Liese, F.: Some properties of the Hellinger transform and its application in classification problems.
    Comp. math. appl. 31 (8), 107-116, 1996.
  6. Fazekas, I., Tómács, T.: Strong law of large numbers for pairwise independent random variables with multidimensional indices.
    Department of Mathematics and Informatics Lajos Kossuth University, Debrecen, 8 p., 1996.
1994
  1. Fazekas, I.: Hellinger Transform of Gaussian Autoregressive Processes.
    Comput. Math. Appl. 27 (7), 15-21, 1994.
  2. Fazekas, I.: Maximum Likelihood Estimators of Parameters of Multidimensional Stationary Gaussian AR Processes.
    Comput. Math. Appl. 27 (8), 19-24, 1994.
1993
  1. Fazekas, I., Eszterházy Károly Tanárképző Főiskola (Eger): Bevezetés a valószínűségszámításba.
    [EKTF], Eger, 160 p., 1993.
1992
  1. Fazekas, I.: Bevezetés a valószínűségszámításba.
    Kossuth Lajos Tudományegyetem, Debrecen, 123 p., 1992.
1991
  1. Fazekas, I.: A. Boros: Measurement Evaluation. Budapest. Akad. K. 1989. [Rec.].
    Publ. Math.-Debr. 38 (3-4), 337-338, 1991.
  2. Fazekas, I.: Collected Papers of Paul Turán. Ed by Paul Erdős. Budapest. Akad. K. 1990. [Rec.].
    Publ. Math.-Debr. 38 (3-4), 340, 1991.
  3. Fazekas, I.: László Máté: Hilbert Space Methods in Science and Engineering. Budapest, Akad. K. 1989. [Rec.].
    Publ. Math.-Debr. 38 (3-4), 337, 1991.
  4. Fazekas, I.: R. Syski: Random Processes. Dekker, New York, 1989. [Rec.].
    Publ. Math.-Debr. 38 (3-4), 340-341, 1991.
1985
  1. Fazekas, I.: Convergence rates in the Marcinkiewicz strong law of large numbers for Banach space valued random variables with multidimensional indices.
    Publ. Math.-Debr. 32 (3-4), 203-209, 1985.
  2. Fazekas, I.: On the convergence of regression type martingale fields.
    In: Probability theory and mathematical statistics with applications : Proceedings of the 5th Pannonian Symposium on Mathematical Statistics, Visegrád, Hungary, 20-24 May, 1985. Ed.: by W. Grossmann, J. Mogyoródi, I. Vincze, W. Wertz, Akadémiai Kiadó, Budapest, 43-52, 1988.
1984
  1. Fazekas, I.: On convergence of multiparameter strong submartingales in Banach lattices.
    Anal. Math. 10 (3), 207-212, 1984.
feltöltött közlemény: 96 Open Access: 26
https://tudoster.idea.unideb.hu
A szolgáltatást nyújtja: DEENK