Tudóstér: Nagy Ábris publikációi

PDF
-
szűkítés
feltöltött közlemény: 11 Open Access: 4
2023
  1. Vincze, C., Nagy, Á.: On Taxicab Distance Mean Functions and their Geometric Applications: Methods, Implementations and Examples.
    Fundam. Inform. 189 (2), 145-169, 2023.
    Folyóirat-mutatók:
    Q3 Algebra and Number Theory
    Q3 Computational Theory and Mathematics
    Q3 Information Systems
    Q4 Theoretical Computer Science
2019
  1. Vincze, C., Nagy, Á.: On the Average Taxicab Distance Function and Its Applications.
    Acta Appl. Math. 161 (1), 201-220, 2019.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
2015
  1. Vincze, C., Nagy, Á.: An algorithm for the reconstruction of hv-convex planar bodies by finitely many and noisy measurements of their coordinate X-rays.
    Fundam. Inform. 141 (2-3), 169-189, 2015.
    Folyóirat-mutatók:
    Q3 Algebra and Number Theory
    Q3 Computational Theory and Mathematics
    Q2 Information Systems
    Q3 Theoretical Computer Science
  2. Barczy, M., Nagy, Á., Noszály, C., Vincze, C.: A Robbins-Monro-type algorithm for computing global minimizer of generalized conic functions.
    Optimization. 64 (9), 1999-2020, 2015.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q2 Control and Optimization
    Q2 Management Science and Operations Research
  3. Nagy, Á.: A short review on the theory of generalized conics.
    Acta Math. Acad. Paedag. Nyíregyh. 31 (1), 81-96, 2015.
    Folyóirat-mutatók:
    Q4 Education
    Q4 Mathematics (miscellaneous)
  4. Vincze, C., Nagy, Á.: Generalized conic functions of hv-convex planar sets: continuity properties and relations to X-rays.
    Aequ. Math. 89 (4), 1015-1030, 2015.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q1 Discrete Mathematics and Combinatorics
    Q1 Mathematics (miscellaneous)
2014
  1. Nagy, Á., Vincze, C.: Reconstruction of hv-convex sets by their coordinate X-ray functions.
    J. Math. Imaging Vis. 49 (3), 569-582, 2014.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q1 Computer Vision and Pattern Recognition
    Q1 Condensed Matter Physics
    Q2 Geometry and Topology
    Q1 Modeling and Simulation
    Q2 Statistics and Probability
2012
  1. Vincze, C., Nagy, Á.: On the theory of generalized conics with applications in geometric tomography.
    J. Approx. Theory. 164 (3), 371-390, 2012.
    Folyóirat-mutatók:
    Q2 Analysis
    Q2 Applied Mathematics
    Q1 Mathematics (miscellaneous)
    Q2 Numerical Analysis
2011
  1. Vincze, C., Nagy, Á.: An introduction to the theory of generalized conics and their applications.
    J. Geom. Phys. 61 (4), 815-828, 2011.
    Folyóirat-mutatók:
    Q3 Geometry and Topology
    Q3 Mathematical Physics
    Q2 Physics and Astronomy (miscellaneous)
2010
  1. Nagy, Á., Vincze, C.: Examples and notes on generalized conics and their applications.
    Acta Math. Acad. Paedag. Nyíregyh. 26 (2), 359-375, 2010.
    Folyóirat-mutatók:
    Q4 Education
    Q4 Mathematics (miscellaneous)
2009
  1. Nagy, Á., Rábai, Z., Vincze, C.: On a special class of generalized conics with infinitely many focal points.
    Teach. Math. Comp. Sci. 7 (1), 87-99, 2009.
feltöltött közlemény: 11 Open Access: 4
https://tudoster.idea.unideb.hu
A szolgáltatást nyújtja: DEENK