Tudóstér: Nagy Gergő publikációi

PDF
-
szűkítés
feltöltött közlemény: 23 Open Access: 8
2023
  1. Boros, Z., Menzer, R., Nagy, G.: A conditional equation for almost polynomials. In: Report of meeting: The 59th International Symposium on Functional Equations Hotel Aurum, Hajdúszoboszló (Hungary), June 18-25, 2023..
    Aequ. Math. 97 (5-6), 1262, 2023.
  2. Menzer, R., Boros, Z., Nagy, G.: An alternative equation for generalized polynomials of degree two. In: Report of meeting: The 59th International Symposium on Functional Equations Hotel Aurum, Hajdúszoboszló (Hungary), June 18-25, 2023..
    Aequ. Math. 97 (5-6), 1268, 2023.
  3. Nagy, G.: Characterizations of centrality in C*-algebras via local convexity of functions.
2020
  1. Nagy, G.: Maps stemming from the functional calculus that transform a Kubo-Ando mean into another.
    Aequ. Math. 94 (4), 761-775, 2020.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q2 Discrete Mathematics and Combinatorics
    Q2 Mathematics (miscellaneous)
2019
  1. Gaál, M., Nagy, G.: A Characterization of Unitary-Antiunitary Similarity Transformations via Kubo-Ando Means.
    Anal. Math. 45 (2), 311-319, 2019.
    Folyóirat-mutatók:
    Q3 Analysis
    Q3 Mathematics (miscellaneous)
  2. Nagy, G.: Characterizations of Centrality in C?-algebras via Local Monotonicity and Local Additivity of Functions.
    Integr. Equ. Oper. Theory. 91 (3), 1-11, 2019.
    Folyóirat-mutatók:
    Q1 Algebra and Number Theory
    Q2 Analysis
  3. Gaál, M., Nagy, G., Szokol, P.: Isometries on Positive Definite Operators with Unit Fuglede-Kadison Determinant.
    Taiwan. J. Math. 23 (6), 1423-1433, 2019.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  4. Nagy, G., Szokol, P.: Maps Preserving Norms of Generalized Weighted Quasi-arithmetic Means of Invertible Positive Operators.
    Electron. J. Linear Algebra. 35 357-364, 2019.
    Folyóirat-mutatók:
    Q3 Algebra and Number Theory
2018
  1. Gaál, M., Nagy, G.: Maps on positive operators preserving Rényi type relative entropies and maximal f-divergences.
    Lett. Math. Phys. 108 (2), 425-443, 2018.
    Folyóirat-mutatók:
    Q1 Mathematical Physics
    Q2 Statistical and Nonlinear Physics
  2. Gaál, M., Nagy, G.: Transformations on Density Operators Preserving Generalised Entropy of a Convex Combination.
    Bull. Aust. Math. Soc. 98 (1), 102-108, 2018.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
2016
  1. Nagy, G.: Determinant preserving maps: an infinite dimensional version of a theorem of Frobenius.
    Linear Multilinear Algebra. 65 (2), 351-360, 2016.
    Folyóirat-mutatók:
    Q2 Algebra and Number Theory
  2. Botelho, F., Molnár, L., Nagy, G.: Linear bijections on von Neumann factors commuting with (lambda)-Aluthge transform.
    Bull. London Math. Soc. 48 (1), 74-84, 2016.
    Folyóirat-mutatók:
    Q1 Mathematics (miscellaneous)
  3. Dolinar, G., Kuzma, B., Nagy, G., Szokol, P.: Restricted skew-morphisms on matrix algebras.
    Linear Alg. Appl. 490 1-17, 2016.
    Folyóirat-mutatók:
    Q1 Algebra and Number Theory
    Q1 Discrete Mathematics and Combinatorics
    Q2 Geometry and Topology
    Q2 Numerical Analysis
  4. Molnár, L., Nagy, G.: Spectral Order Automorphisms on Hilbert Space Effects and Observables: The 2-Dimensional Case.
    Lett. Math. Phys. 106 (4), 535-544, 2016.
    Folyóirat-mutatók:
    Q2 Mathematical Physics
    Q2 Statistical and Nonlinear Physics
2015
  1. Nagy, G.: Isometries of the spaces of self-adjoint traceless operators.
    Linear Alg. Appl. 484 1-12, 2015.
    Folyóirat-mutatók:
    Q2 Algebra and Number Theory
    Q2 Discrete Mathematics and Combinatorics
    Q2 Geometry and Topology
    Q2 Numerical Analysis
2014
  1. Gehér, G., Nagy, G.: Maps on classes of Hilbert space operators preserving measure of commutativity.
    Linear Alg. Appl. 463 205-227, 2014.
    Folyóirat-mutatók:
    Q2 Algebra and Number Theory
    Q2 Discrete Mathematics and Combinatorics
    Q2 Geometry and Topology
    Q2 Numerical Analysis
  2. Nagy, G.: Preservers for the p-norm of linear combinations of positive operators.
    Abstract Appl. Anal. 2014 1-9, 2014.
    Folyóirat-mutatók:
    Q3 Analysis
    Q3 Applied Mathematics
  3. Molnár, L., Nagy, G.: Transformations on Density Operators That Leave the Holevo Bound Invariant.
    Int. J. Theor. Phys. 53 (10), 3273-3278, 2014.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
    Q3 Physics and Astronomy (miscellaneous)
2013
  1. Nagy, G.: Isometries on positive operators of unit norm.
    Publ. Math.-Debr. 82 (1), 183-192, 2013.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  2. Molnár, L., Nagy, G., Szokol, P.: Maps on density operators preserving quantum f -divergences.
    Quantum Inf Process. 12 (7), 2309-2323, 2013.
    Folyóirat-mutatók:
    Q1 Electrical and Electronic Engineering
    Q1 Electronic, Optical and Magnetic Materials
    Q1 Modeling and Simulation
    Q1 Signal Processing
    Q2 Statistical and Nonlinear Physics
    Q1 Theoretical Computer Science
2012
  1. Molnár, L., Nagy, G.: Isometries and relative entropy preserving maps on density operators.
    Linear Multilinear Algebra. 60 (1), 93-108, 2012.
    Folyóirat-mutatók:
    Q3 Algebra and Number Theory
2010
  1. Molnár, L., Nagy, G.: Thompson isometries on positive operators: the 2-dimensional case.
    Electron. J. Linear Algebra. 20 79-89, 2010.
    Folyóirat-mutatók:
    Q3 Algebra and Number Theory
2009
  1. Nagy, G.: Commutativity preserving maps on quantum states.
    Rep. Math. Phys. 63 (3), 447-464, 2009.
    Folyóirat-mutatók:
    Q3 Mathematical Physics
    Q4 Statistical and Nonlinear Physics
feltöltött közlemény: 23 Open Access: 8
https://tudoster.idea.unideb.hu
A szolgáltatást nyújtja: DEENK