Tudóstér: Gát György publikációi

PDF
-
szűkítés
feltöltött közlemény: 32 Open Access: 4
2023
  1. Gát, G.: Almost everywhere divergence of Cesaro means of subsequences of partial sums of trigonometric Fourier series.
    Math. Ann. "Accepted by Publisher"2023.
    Folyóirat-mutatók:
    D1 Mathematics (miscellaneous) (2022)
  2. Gát, G., Goginava, U.: Cesàro means with varying parameters of Walsh-Fourier series.
    Period. Math. Hung. 87 (1), 57-74, 2023.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous) (2022)
  3. Blahota, I., Gát, G.: Norm and almost everywhere convergence of matrix transform means of Walsh-Fourier series.
    Acta Universitatis Sapientiae: Mathematica 15 (2), 244-258, 2023.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous) (2022)
  4. Abayomi, E., Ali, A., Bessenyei, M., Boros, Z., Chmielewska, K., Chudziak, J., Gát, G., Gilányi, A., Grünwald, R., Gselmann, E., Iqbal, M., Kiss, T., Łukasik, R., Maslyuchenko, O., Menzer, R., Molnár, G., Olbryś, A., Páles, Z., Pénzes, E., Pieszczek, M., Sablik, M., Székelyhidi, L., Szostok, T., Tóth, N., Tóth, P., Wójcik, S., Zürcher, T.: Report of Meeting: The Twenty-second Debrecen-Katowice Winter Seminar on Functional Equations and Inequalities Hajdúszoboszló (Hungary), February 1-4, 2023.
    Ann. Math. Sil. 37 (2), 315-334, 2023.
2022
  1. Gát, G., Goginava, U.: Almost everywhere convergence and divergence of Cesàro means with varying parameters of Walsh-Fourier series.
    Arab. J. Math. 11 (2), 241-259, 2022.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
  2. Gát, G., Lucskai, G.: Almost Everywhere Convergence of Cesàro-Marczinkiewicz Means of Two-Dimensional Fourier Series on the Group of 2-Adic Integers.
    P-Adic Num Ultrametr Anal Appl. 14 (2), 116-137, 2022.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  3. Gát, G., Lucskai, G.: Almost everywhere convergence of Riesz means of one-dimensional Fourier series on the group of 2-adic integers.
    Novi Sad J. Math. 52 (2), 151-164, 2022.
    Folyóirat-mutatók:
    Q4 Mathematics (miscellaneous)
  4. Blahota, I., Gát, G.: On the Rate of Approximation by Generalized de la Vallee Poussin Type Matrix Transform Means of Walsh-Fourier Series.
    P-Adic Num Ultrametr Anal Appl. 14 (Suppl.), S59-S73, 2022.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  5. Gát, G., Goginava, U.: The Walsh-Fourier Transform on the Real Line.
    J. Contemp. Math. Anal.-Armen. Aca. 57 (4), 205-214, 2022.
    Folyóirat-mutatók:
    Q4 Analysis
    Q3 Applied Mathematics
    Q4 Control and Optimization
2021
  1. Anas, A., Gát, G.: Almost everywhere convergence of Cesáro means of two variable Walsh-Fourier series with varying parameters.
    Ukr. Math. J. 73 (3), 337-358, 2021.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  2. Gát, G., Tilahun, A.: Multi-parameter setting (C,α) means with respect to one dimensional Vilenkin system.
    Filomat. 35 (12), 4121-4133, 2021.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  3. Gát, G., Lucskai, G.: On the negativity of the Walsh-Kaczmarz-Riesz logarithmic kernels.
    Math. Pannon. 27 (2), 197-203, 2021.
2020
  1. Gát, G., Toledo, R.: Numerical solution of linear differential equations by Walsh polynomials approach.
    Stud. Sci. Math. Hung. 57 (2), 217-254, 2020.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
  2. Gát, G., Tilahun, A.: On almost everywhere convergence of the generalized Marcienkiwicz means with respect to two dimensional Vilenkin-like systems.
    Miskolc Math. Notes. 21 (2), 823-840, 2020.
    Folyóirat-mutatók:
    Q3 Algebra and Number Theory
    Q3 Analysis
    Q2 Control and Optimization
    Q3 Discrete Mathematics and Combinatorics
    Q3 Numerical Analysis
  3. Gát, G., Goginava, U.: Pointwise Strong Summability of Vilenkin-Fourier Series.
    Math. Notes. 108 (3-4), 499-510, 2020.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
2019
  1. Gát, G.: Cesaro Means of Subsequences of Partial Sums of Trigonometric Fourier Series.
    Constr. Approx. 49 (1), 59-101, 2019.
    Folyóirat-mutatók:
    Q2 Analysis
    Q2 Computational Mathematics
    Q2 Mathematics (miscellaneous)
  2. Gát, G., Goginava, U.: Convergence of a Subsequence of Triangular Partial Sums of Double Walsh-Fourier Series.
    J. Contemp. Math. Anal. 54 (4), 210-215, 2019.
    Folyóirat-mutatók:
    Q4 Analysis
    Q4 Applied Mathematics
    Q4 Control and Optimization
  3. Gát, G., Lucskai, G.: Estimation on the Walsh-Fejer and Walsh logarithmic kernels.
    Publ. Math. Debr. 95 (3-4), 415-435, 2019.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  4. Gát, G., Goginava, U.: Maximal operators of Cesàro means with varying parameters of Walsh-Fourier series.
    Acta math. Hung. 159 (2), 653-668, 2019.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  5. Gát, G., Goginava, U.: Norm Convergence of Double Fejér Means on Unbounded Vilenkin Groups.
    Anal. Math. 45 (1), 39-62, 2019.
    Folyóirat-mutatók:
    Q3 Analysis
    Q3 Mathematics (miscellaneous)
  6. Gát, G.: On the convergence of Fejér means of some subsequences of partial sums of Walsh-Fourier series.
    Annales Univ. Sci. Budapest., Sect. Comp. 49 187-198, 2019.
2018
  1. Gát, G.: Almost Everywhere Convergence of Fejér Means of Two-dimensional Triangular Walsh-Fourier Series.
    J. Fourier Anal. Appl. 24 (5), 1249-1275, 2018.
    Folyóirat-mutatók:
    Q2 Analysis
    Q2 Applied Mathematics
    Q1 Mathematics (miscellaneous)
  2. Gát, G., Goginava, U.: Almost Everywhere Convergence of Subsequence of Quadratic Partial Sums of Two-Dimensional Walsh-Fourier Series.
    Anal. Math. 44 (1), 73-88, 2018.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  3. Anas, A., Gát, G.: Convergence of Cesáro means with varying parameters of Walsh-Fourier series.
    Miskolc Math. Notes. 19 (1), 303-317, 2018.
    Folyóirat-mutatók:
    Q4 Algebra and Number Theory
    Q3 Analysis
    Q3 Control and Optimization
    Q4 Discrete Mathematics and Combinatorics
    Q3 Numerical Analysis
  4. Gát, G., Goginava, U.: Subsequences of triangular partial sums of double Fourier series on unbounded Vilenkin groups.
    Filomat. 32 (11), 3769-3778, 2018.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
2017
  1. Gát, G., Goginava, U.: Norm convergence of double Fourier series on unbounded Vilenkin groups.
    Acta math. Hung. 152 (1), 201-216, 2017.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
2016
  1. Gát, G., Goginava, U.: Almost everywhere convergence of dyadic triangular-Fejér means of two-dimensional Walsh-Fourier series.
    Math. Inequal. Appl. 19 (2), 401-415, 2016.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q2 Mathematics (miscellaneous)
  2. Gát, G.: Marcinkiewicz-like means of two dimensional Vilenkin-Fourier series.
    Publ. Math. Debr. 89 (3), 331-346, 2016.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
  3. Gát, G., Karagulyan, G.: On Convergence Properties of Tensor Products of Some Operator Sequences.
    J. Geom. Anal. 26 (4), 3066-3089, 2016.
    Folyóirat-mutatók:
    D1 Geometry and Topology
  4. Gát, G.: Some recent results on convergence and divergence with respect to Walsh-Fourier series.
    Acta Math. Acad. Paedag. Nyíregyh. 32 (2), 215-223, 2016.
    Folyóirat-mutatók:
    Q4 Education
    Q4 Mathematics (miscellaneous)
2015
  1. Gát, G.: Convergence of Fejér means of integrable functions with respect to weighted Walsh systems.
    Acta Sci. Math. 81 (3-4), 549-560, 2015.
    Folyóirat-mutatók:
    Q4 Analysis
    Q3 Applied Mathematics
  2. Gát, G., Karagulyan, G.: On everywhere divergence of the strong [Phi]-means of Walsh-Fourier series.
    J. Math. Anal. Appl. 421 (1), 206-214, 2015.
    Folyóirat-mutatók:
    Q2 Analysis
    Q1 Applied Mathematics
feltöltött közlemény: 32 Open Access: 4
https://tudoster.idea.unideb.hu
A szolgáltatást nyújtja: DEENK