Tudóstér: Gát György publikációi

PDF
-
szűkítés
feltöltött közlemény: 32 Open Access: 9
2024
  1. Gát, G.: Almost everywhere divergence of Cesaro means of subsequences of partial sums of trigonometric Fourier series.
    Math. Ann. 389 (4), 4199-4231, 2024.
    Folyóirat-mutatók:
    D1 Mathematics (miscellaneous) (2023)
  2. Blahota, I., Gát, G.: Approximation by Subsequences of Matrix Transform Means of Some Two-Dimensional Rectangle Walsh-Fourier Series.
    J. Fourier Anal. Appl. 30 (5), 1-35, 2024.
    Folyóirat-mutatók:
    Q1 Analysis (2023)
    Q1 Applied Mathematics (2023)
    Q1 Mathematics (miscellaneous) (2023)
2023
  1. Gát, G., Goginava, U.: Cesàro means with varying parameters of Walsh-Fourier series.
    Period. Math. Hung. 87 (1), 57-74, 2023.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  2. Blahota, I., Gát, G.: Norm and almost everywhere convergence of matrix transform means of Walsh-Fourier series.
    Acta Univ. Sapientiae, Mathematica. 15 (2), 244-258, 2023.
    Folyóirat-mutatók:
    Q4 Mathematics (miscellaneous)
2022
  1. Gát, G., Goginava, U.: Almost everywhere convergence and divergence of Cesàro means with varying parameters of Walsh-Fourier series.
    Arab. J. Math. 11 (2), 241-259, 2022.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
  2. Gát, G., Lucskai, G.: Almost Everywhere Convergence of Cesàro-Marczinkiewicz Means of Two-Dimensional Fourier Series on the Group of 2-Adic Integers.
    P-Adic Num Ultrametr Anal Appl. 14 (2), 116-137, 2022.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  3. Gát, G., Lucskai, G.: Almost everywhere convergence of Riesz means of one-dimensional Fourier series on the group of 2-adic integers.
    Novi Sad J. Math. 52 (2), 151-164, 2022.
    Folyóirat-mutatók:
    Q4 Mathematics (miscellaneous)
  4. Blahota, I., Gát, G.: On the Rate of Approximation by Generalized de la Vallee Poussin Type Matrix Transform Means of Walsh-Fourier Series.
    P-Adic Num Ultrametr Anal Appl. 14 (Suppl.), S59-S73, 2022.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  5. Gát, G., Goginava, U.: The Walsh-Fourier Transform on the Real Line.
    J. Contemp. Math. Anal.-Armen. Aca. 57 (4), 205-214, 2022.
    Folyóirat-mutatók:
    Q4 Analysis
    Q3 Applied Mathematics
    Q4 Control and Optimization
2021
  1. Anas, A., Gát, G.: Almost everywhere convergence of Cesáro means of two variable Walsh-Fourier series with varying parameters.
    Ukr. Math. J. 73 (3), 337-358, 2021.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  2. Gát, G., Tilahun, A.: Multi-parameter setting (C,α) means with respect to one dimensional Vilenkin system.
    Filomat. 35 (12), 4121-4133, 2021.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  3. Gát, G., Lucskai, G.: On the negativity of the Walsh-Kaczmarz-Riesz logarithmic kernels.
    Math. Pannon. 27 (2), 197-203, 2021.
2020
  1. Gát, G., Toledo, R.: Numerical solution of linear differential equations by Walsh polynomials approach.
    Stud. Sci. Math. Hung. 57 (2), 217-254, 2020.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
  2. Gát, G., Tilahun, A.: On almost everywhere convergence of the generalized Marcienkiwicz means with respect to two dimensional Vilenkin-like systems.
    Miskolc Math. Notes. 21 (2), 823-840, 2020.
    Folyóirat-mutatók:
    Q3 Algebra and Number Theory
    Q3 Analysis
    Q2 Control and Optimization
    Q3 Discrete Mathematics and Combinatorics
    Q3 Numerical Analysis
  3. Gát, G., Goginava, U.: Pointwise Strong Summability of Vilenkin-Fourier Series.
    Math. Notes. 108 (3-4), 499-510, 2020.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
2019
  1. Gát, G.: Cesaro Means of Subsequences of Partial Sums of Trigonometric Fourier Series.
    Constr. Approx. 49 (1), 59-101, 2019.
    Folyóirat-mutatók:
    Q2 Analysis
    Q2 Computational Mathematics
    Q2 Mathematics (miscellaneous)
  2. Gát, G., Goginava, U.: Convergence of a Subsequence of Triangular Partial Sums of Double Walsh-Fourier Series.
    J. Contemp. Math. Anal. 54 (4), 210-215, 2019.
    Folyóirat-mutatók:
    Q4 Analysis
    Q4 Applied Mathematics
    Q4 Control and Optimization
  3. Gát, G., Lucskai, G.: Estimation on the Walsh-Fejer and Walsh logarithmic kernels.
    Publ. Math. Debr. 95 (3-4), 415-435, 2019.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  4. Gát, G., Goginava, U.: Maximal operators of Cesàro means with varying parameters of Walsh-Fourier series.
    Acta math. Hung. 159 (2), 653-668, 2019.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  5. Gát, G., Goginava, U.: Norm Convergence of Double Fejér Means on Unbounded Vilenkin Groups.
    Anal. Math. 45 (1), 39-62, 2019.
    Folyóirat-mutatók:
    Q3 Analysis
    Q3 Mathematics (miscellaneous)
  6. Gát, G.: On the convergence of Fejér means of some subsequences of partial sums of Walsh-Fourier series.
    Annales Univ. Sci. Budapest., Sect. Comp. 49 187-198, 2019.
2018
  1. Gát, G.: Almost Everywhere Convergence of Fejér Means of Two-dimensional Triangular Walsh-Fourier Series.
    J. Fourier Anal. Appl. 24 (5), 1249-1275, 2018.
    Folyóirat-mutatók:
    Q2 Analysis
    Q2 Applied Mathematics
    Q1 Mathematics (miscellaneous)
  2. Gát, G., Goginava, U.: Almost Everywhere Convergence of Subsequence of Quadratic Partial Sums of Two-Dimensional Walsh-Fourier Series.
    Anal. Math. 44 (1), 73-88, 2018.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  3. Anas, A., Gát, G.: Convergence of Cesáro means with varying parameters of Walsh-Fourier series.
    Miskolc Math. Notes. 19 (1), 303-317, 2018.
    Folyóirat-mutatók:
    Q4 Algebra and Number Theory
    Q3 Analysis
    Q3 Control and Optimization
    Q4 Discrete Mathematics and Combinatorics
    Q3 Numerical Analysis
  4. Gát, G., Goginava, U.: Subsequences of triangular partial sums of double Fourier series on unbounded Vilenkin groups.
    Filomat. 32 (11), 3769-3778, 2018.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
2017
  1. Gát, G., Goginava, U.: Norm convergence of double Fourier series on unbounded Vilenkin groups.
    Acta math. Hung. 152 (1), 201-216, 2017.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
2016
  1. Gát, G., Goginava, U.: Almost everywhere convergence of dyadic triangular-Fejér means of two-dimensional Walsh-Fourier series.
    Math. Inequal. Appl. 19 (2), 401-415, 2016.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q2 Mathematics (miscellaneous)
  2. Gát, G.: Marcinkiewicz-like means of two dimensional Vilenkin-Fourier series.
    Publ. Math. Debr. 89 (3), 331-346, 2016.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
  3. Gát, G., Karagulyan, G.: On Convergence Properties of Tensor Products of Some Operator Sequences.
    J. Geom. Anal. 26 (4), 3066-3089, 2016.
    Folyóirat-mutatók:
    D1 Geometry and Topology
  4. Gát, G.: Some recent results on convergence and divergence with respect to Walsh-Fourier series.
    Acta Math. Acad. Paedag. Nyíregyh. 32 (2), 215-223, 2016.
    Folyóirat-mutatók:
    Q4 Education
    Q4 Mathematics (miscellaneous)
2015
  1. Gát, G.: Convergence of Fejér means of integrable functions with respect to weighted Walsh systems.
    Acta Sci. Math. 81 (3-4), 549-560, 2015.
    Folyóirat-mutatók:
    Q4 Analysis
    Q3 Applied Mathematics
  2. Gát, G., Karagulyan, G.: On everywhere divergence of the strong [Phi]-means of Walsh-Fourier series.
    J. Math. Anal. Appl. 421 (1), 206-214, 2015.
    Folyóirat-mutatók:
    Q2 Analysis
    Q1 Applied Mathematics
feltöltött közlemény: 32 Open Access: 9
https://tudoster.idea.unideb.hu
A szolgáltatást nyújtja: DEENK