Tudóstér: Rakaczki Csaba publikációi

PDF
-
szűkítés
feltöltött közlemény: 10 Open Access: 4
2024
  1. Pintér, Á., Rakaczki, C.: Indecomposability of mixed linear combinations of Bernoulli and Euler polynomials.
    Publ. Math. Debr. 104 (1-2), 159-170, 2024.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous) (2023)
2022
  1. Pintér, Á., Rakaczki, C.: Indecomposability of linear combinations of Bernoulli polynomial.
    Publ. Math. Debr. 100 (3-4), 487-494, 2022.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
2019
  1. Pintér, Á., Rakaczki, C.: On the Decomposability of the Linear Combinations of Euler Polynomials with Odd Degrees.
    Symmetry. 11 (6), 1-8, 2019.
    Folyóirat-mutatók:
    Q2 Chemistry (miscellaneous)
    Q2 Computer Science (miscellaneous)
    Q3 Mathematics (miscellaneous)
    Q3 Physics and Astronomy (miscellaneous)
2017
  1. Pintér, Á., Rakaczki, C.: On the decomposability of linear combinations of Euler polynomials.
    Miskolc Math. Notes. 18 (1), 407-415, 2017.
    Folyóirat-mutatók:
    Q4 Algebra and Number Theory
    Q4 Analysis
    Q3 Control and Optimization
    Q3 Discrete Mathematics and Combinatorics
    Q3 Numerical Analysis
2016
  1. Pintér, Á., Rakaczki, C.: On the decomposability of linear combinations of Bernoulli polynomials.
    Monatsh. Math. 180 (3), 631-648, 2016.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
2008
  1. Rakaczki, C.: On some diophantine results related to Euler polynomials.
    Period. Math. Hung. 57 (1), 61-71, 2008.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
2007
  1. Pintér, Á., Rakaczki, C.: On the zeros of shifted Bernoulli polynomials.
    Appl. Math. Comput. 187 (1), 379-383, 2007.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q2 Computational Mathematics
2004
  1. Rakaczki, C.: On the diophantine equation F((x n)) = b(y m).
    Period. Math. Hung. 49 (2), 119-132, 2004.
    Folyóirat-mutatók:
    Q4 Mathematics (miscellaneous)
2003
  1. Rakaczki, C., Száz, Á.: Semicontinuity and closedness properties of relations in relator spaces.
    Mathematica (Cluj). 45 (1), 73-92, 2003.
1997
  1. Száz, Á., Rakaczki, C.: Semicontinuity and closedness properties of relations in relator spaces.
    Department of Mathematics and Informatics Lajos Kossuth University, Debrecen, 23 p., 1997.
feltöltött közlemény: 10 Open Access: 4
https://tudoster.idea.unideb.hu
A szolgáltatást nyújtja: DEENK