Tudóstér: Szathmáry László publikációi

PDF
-
szűkítés
feltöltött közlemény: 12 Open Access: 4
2024
  1. Alshuwaili, D., Nsaif, M., Szathmáry, L., Szeghalmy, S.: A comparative study of pre-trained models in breast ultrasound image segmentation.
    2024 IEEE 3rd Conference on Information Technology and Data Science (CITDS) Proceedings /András Hajdu 81-86, 2024.
  2. Alshuwaili, D., Szathmáry, L.: A one-dimensional convolutional neural network-based deep learning approach for predicting cardiovascular diseases.
    Inform. Med. Unlocked. 49 1-14, 2024.
    Folyóirat-mutatók:
    Q2 Health Informatics (2023)
2023
  1. Szathmáry, L.: An incremental algorithm for computing the transversal hypergraph.
    Ann. Math. Inform. 58 ((2023),), 147-159, 2023.
    Folyóirat-mutatók:
    Q4 Computer Science (miscellaneous)
    Q4 Mathematics (miscellaneous)
2021
  1. Ghori, K., Awais, M., Akmal, S., Imran, M., Abbasi, R., Szathmáry, L.: A Review on Latest Trends in Non-Technical Loss Detection.
    In: CEUR Workshop Proceedings. Szerk.: Fazekas István, Hajdu András, Tómács Tibor, CEUR Workshop Proceedings, Debrecen, 131-139, 2021.
2020
  1. Szathmáry, L.: Closed Association Rules.
    Ann. Math. Inform. 51 65-76, 2020.
    Folyóirat-mutatók:
    Q4 Computer Science (miscellaneous)
    Q4 Mathematics (miscellaneous)
  2. Szathmáry, L.: Egy gyakori zárt mintákat és gyakori generátorokat kereső vertikális algoritmus.
    AML. 37 (1), 71-85, 2020.
  3. Ghori, K., Abbasi, R., Awais, M., Imran, M., Ullah, A., Szathmáry, L.: Impact of Feature Selection on Non-Technical Loss Detection.
    In: 6th Conference on Data Science and Machine Learning Applications, IEEE, Piscataway, 19-24, 2020. ISBN: 9781728127460
  4. Ghori, K., Abbasi, R., Awais, M., Imran, M., Ullah, A., Szathmáry, L.: Performance Analysis of Different Types of Machine Learning Classifiers for Non-Technical Loss Detection.
    IEEE Access. 8 16033-16048, 2020.
    Folyóirat-mutatók:
    Q1 Computer Science (miscellaneous)
    Q1 Engineering (miscellaneous)
    Q2 Materials Science (miscellaneous)
  5. Ghori, K., Imran, M., Nawaz, A., Abbasi, R., Ullah, A., Szathmáry, L.: Performance analysis of machine learning classifiers for non-technical loss detection.
    Ambient Intell. Humaniz. Comput. [Epub ahead of print] 1-16, 2020.
    Folyóirat-mutatók:
    Q1 Computer Science (miscellaneous)
2014
  1. Szathmáry, L., Ispány, M.: CGT: a vertical miner for frequent equivalence classes of itemsets.
    In: Proceedings of the 1st International Conference and Exhibition on Future RFID Technologies [elektronikus dokumentum]. Eds.: Emőd Kovács, Gábor Kusper, Tibor Juhász, Tibor Tómács, [EKTF], [Eger], 161-169, 2014. ISBN: 9786155509230
2013
  1. Szathmáry, L., Valtchev, P., Napoli, A., Godin, R., Boc, A., Makarenkov, V.: A fast compound algorithm for mining generators, closed itemsets, and computing links between equivalence classes.
    Ann. Math. Artif. Intell. 70 (1-2), 81-105, 2013.
    Folyóirat-mutatók:
    Q3 Applied Mathematics
    Q3 Artificial Intelligence
2010
  1. Szathmáry, L., Valtchev, P., Napoli, A.: Generating Rare Association Rules Using the Minimal Rare Itemsets Family.
    Int. J. Softw. Inform. 4 (3), 219-238, 2010.
feltöltött közlemény: 12 Open Access: 4
https://tudoster.idea.unideb.hu
A szolgáltatást nyújtja: DEENK