Tudóstér: Győry Kálmán publikációi

PDF
-
szűkítés
feltöltött közlemény: 206 Open Access: 15
2024
  1. Győry, K., Pethő, A., Szalay, L.: Decomposable Forms Generated by Linear Recurrences.
    J. Integer Seq. 27 (3), 1-19, 2024.
    Folyóirat-mutatók:
    Q3 Discrete Mathematics and Combinatorics (2023)
  2. Bérczes, A., Bugeaud, Y., Győry, K., Mello, J., Ostafe, A., Sha, M.: Explicit bounds for the solutions of superelliptic equations over number fields.
    Forum Math. "Accepted by Publisher" (-), -, 2024.
    Folyóirat-mutatók:
    Q2 Applied Mathematics (2023)
    Q1 Mathematics (miscellaneous) (2023)
2023
  1. Bhargava, M., Evertse, J., Győry, K., Remete, L., Swaminathan, A.: Hermite equivalence of polynomials.
    Acta Arith. 209 17-58, 2023.
    Folyóirat-mutatók:
    Q2 Algebra and Number Theory
  2. Dujella, A., Győry, K., Michaud-Jacobs, P., Pintér, Á.: On power values of pyramidal numbers, II.
    Acta Arith. 208 (3), 199-213, 2023.
    Folyóirat-mutatók:
    Q2 Algebra and Number Theory
2022
  1. Evertse, J., Győry, K.: Effective results and methods for diophantine equations over finitely generated domains.
    Cambridge University Press, Cambridge, 240 p., 2022. ISBN: 9781009005852
  2. Győry, K., Hajdu, L., Sárközy, A.: On additive and multiplicative decompositions of sets of integers composed from a given set of primes, I (Additive decompositions).
    Acta Arith. 202 (1), 29-42, 2022.
    Folyóirat-mutatók:
    Q2 Algebra and Number Theory
  3. Győry, K.: S-unit equations and Masser`s ABC conjecture in algebraic number fields.
    Publ. Math. Debr. 100 (3-4), 499-511, 2022.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
2021
  1. Győry, K., Hajdu, L., Sárközy, A.: On additive and multiplicative decompositions of sets of integers with restricted prime factors, I. (Smooth numbers).
    Indag. Math.-New Ser. 32 (2), 365-374, 2021.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  2. Győry, K., Hajdu, L., Sárközy, A.: On additive and multiplicative decompositions of sets of integers with restricted prime factors, II: Smooth numbers and generalizations.
    Indag. Math.-New Ser. 32 (4), 813-823, 2021.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
2020
  1. Győry, K.: Corrigendum to "Bounds for the solutions of S-unit equations and decomposable form equations II": [Publ. Math. Debrecen 94 (2019), 507-526].
    Publ. Math. Debr. 97 (3-4), 525, 2020.
2019
  1. Győry, K.: Bounds for the solutions of S-unit equations and decomposable form equations II.
    Publ. Math. Debr. 94 (3-4), 507-526, 2019.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  2. Evertse, J., Győry, K., Stewart, C.: Mahler's Work on Diophantine Equations and Subsequent Developments.
    Doc Math. Ext.Vol. Mahl.Sel. 149-171, 2019.
  3. Evertse, J., Győry, K., Pethő, A., Thuswaldner, J.: Number systems over general orders.
    Acta Math. Hung. 159 (1), 187-205, 2019.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
2018
  1. Bertók, C., Győry, K., Hajdu, L., Schinzel, A.: On the smallest number of terms of vanishing sums of units in number fields.
    J. Number Theory. 192 328-347, 2018.
    Folyóirat-mutatók:
    Q1 Algebra and Number Theory
  2. Bugeaud, Y., Evertse, J., Győry, K.: S-parts of values of univariate polynomials, binary forms and decomposable forms at integral points.
    Acta Arith. 184 (2), 151-185, 2018.
    Folyóirat-mutatók:
    Q2 Algebra and Number Theory
2017
  1. Evertse, J., Győry, K.: Discriminant equations in Diophantine number theory.
    Cambridge University Press, Cambridge, xviii, 457 p., 2017. ISBN: 9781107097612
  2. Evertse, J., Győry, K.: Effective results for discriminant equations over finitely generated integral domains.
    In: Number Theory-Diophantine problems uniform distribution and applications. Ed.: Christian Elsholtz, Peter Grabner, Springer, Cham, 237-256, 2017. ISBN: 9783319553566
2016
  1. Győry, K.: On some norm inequalities and discriminant inequalities in CM-fields.
    Publ. Math. Debr. 89 (4), 513-523, 2016.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
  2. Győry, K., Hajdu, L., Tijdeman, R.: Representation of finite graphs as difference graphs of S-units. II.
    Acta Math. Hung. 149 (2), 423-447, 2016.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
2015
  1. Bazsó, A., Bérczes, A., Győry, K., Pintér, Á.: Erratum to the paper "On the resolution of equations Axn - Byn = C in integers x, y and n >= 3, II".
    Publ. Math. Debr. 86 (1-2), 251-253, 2015.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
  2. Evertse, J., Győry, K.: Unit equations in Diophantine number theory.
    Cambridge Univ Press, Cambridge, XV, 363 p., 2015. ISBN: 9781107097605
2014
  1. Bérczes, A., Evertse, J., Győry, K.: Effective results for Diophantine equations over finitely generated domains.
    Acta Arith. 163 (1), 71-100, 2014.
    Folyóirat-mutatók:
    Q2 Algebra and Number Theory
  2. Evertse, J., Győry, K.: Effective results for Diophantine equations over finitely generated domains: A survey.
    In: Number theory, analysis and combinatorics, Proceedings of the Pál Turán Memorial Conference, August 22-26, 2011, Budapest / J. Pintz, A. Biró, K. Győry, G. Harcos, M. Simonovits, J. Szabados, eds, Walter De Gruyter & Co, [S.l.], 63-74, 2014. ISBN: 9783110282375
  3. Győry, K., Kovács, T., Péter, G., Pintér, Á.: Equal values of standard counting polynomials.
    Publ. Math. Debr. 84 (1-2), 259-277, 2014.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  4. Pintz, J., Bíró, A., Győry, K., Harcos, G., Simonovits, M., Szabados, J.: Number theory, analysis, and combinatorics: Proceedings of the Paul Turán Memorial Conference held August 22-26, 2011 in Budapest.
    De Gruyter GmbH., Berlin, xii, 406 p., 2014. ISBN: 9783110282375
  5. Győry, K., Hajdu, L., Tijdeman, R.: Representation of finite graphs as difference graphs of S-units, I.
    J. Comb. Theory Ser. A. 127 (1), 314-335, 2014.
    Folyóirat-mutatók:
    Q1 Computational Theory and Mathematics
    Q1 Discrete Mathematics and Combinatorics
    Q1 Theoretical Computer Science
  6. Győry, K.: Visszaemlékezés Szénássy Barnára.
    Gerundium. 5 (1-2), 163-164, 2014.
2013
  1. Bérczes, A., Evertse, J., Győry, K.: Effective results for hyper- and superelliptic equations over number fields.
    Publ. Math. Debr. 82 (3-4), 727-756, 2013.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  2. Evertse, J., Győry, K.: Effective results for unit equations over finitely generated integral domains.
    Math. Proc. Camb. Philos. Soc. 154 (2), 351-380, 2013.
    Folyóirat-mutatók:
    Q1 Mathematics (miscellaneous)
  3. Bérczes, A., Evertse, J., Győry, K.: Multiply monogenic orders.
    Ann. Scuola Norm. Super. Pisa-Cl. 12 (2), 467-497, 2013.
    Folyóirat-mutatók:
    D1 Mathematics (miscellaneous)
    D1 Theoretical Computer Science
  4. Győry, K.: Perfect Powers in Products with Consecutive Terms from Arithmetic Progressions, II.
    In: Erdös Centennial / László Lovász, Imre Z. Ruzsa, Vera T. Sós (eds.), Springer, Berlin, 311-324, 2013, (Bolyai Society Mathematical Studies, ISSN 1217-4696) ISBN: 9783642392856
2012
  1. Győry, K., Pintér, Á.: Binomial Thue equations, ternary equations and power values of polynomials.
    J. Math. Sci. 180 (5), 569-580, 2012.
    Folyóirat-mutatók:
    Q3 Applied Mathematics
    Q3 Mathematics (miscellaneous)
    Q4 Statistics and Probability
  2. Dujella, A., Győry, K., Pintér, Á.: On power values of pyramidal numbers, I.
    Acta Arith. 155 (2), 217-226, 2012.
    Folyóirat-mutatók:
    Q2 Algebra and Number Theory
2011
  1. Győry, K., Hajdu, L., Tijdeman, R.: Irreducibility criteria of Schur-type and Pólya-type.
    Monatsh. Math. 163 (4), 415-443, 2011.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
2010
  1. Győry, K., Pintér, Á.: Binomial'nye uravneniâ Tuè, ternarnye uravneniâ i stepeni sredi značenij polinomov = Binomial Thue equations, ternary equations, and power values of polynomials.
    Fundam. prikl. mat. 16 (5), 61-77, 2010.
    Folyóirat-mutatók:
    Q4 Algebra and Number Theory
    Q4 Analysis
    Q4 Applied Mathematics
    Q4 Geometry and Topology
  2. Bazsó, A., Bérczes, A., Győry, K., Pintér, Á.: On the resolution of equations Axn-Byn=C in integers x,y and n >- 3. II.
    Publ. Math. Debr. 76 (1-2), 227-250, 2010.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  3. Győry, K.: S-unit equations in number fields: effective results, generalizations, abc-conjecture.
    RIMS Kokyuroku. 1710 71-84, 2010.
  4. Győry, K., Smyth, C.: The divisibility of an-bn by powers of n.
    Integers. 10 (3), 319-334, 2010.
2009
  1. Bérczes, A., Evertse, J., Győry, K.: Effective results for linear equations in two unknowns from a multiplicative division group.
    Acta Arith. 136 (4), 331-349, 2009.
    Folyóirat-mutatók:
    Q2 Algebra and Number Theory
  2. Bérczes, A., Győry, K., Evertse, J., Pontreau, C.: Effective results for points on certain subvarieties of tori.
    Math. Proc. Cambridge Phil. Soc. 147 (1), 69-94, 2009.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  3. Győry, K., Hajdu, L., Pintér, Á.: Perfect powers from products of consecitive terms in arithmetic progression.
    Compos. Math. 145 (4), 845-864, 2009.
    Folyóirat-mutatók:
    D1 Algebra and Number Theory
2008
  1. Győry, K.: On certain arithmetic graphs and their applications to diophantine problems.
    Funct. Approx. Comment. Math. 39 (2), 289-314, 2008.
    Folyóirat-mutatók:
    Q4 Mathematics (miscellaneous)
  2. Győry, K.: On the abc conjecture in algebraic number fields.
    Acta Arith. 133 (3), 281-295, 2008.
    Folyóirat-mutatók:
    Q2 Algebra and Number Theory
  3. Győry, K., Pintér, Á., Saradha, N.: Polynomial powers and a common generalization of binomial Thue-Mahler equations and S-unit equations.
    In: Diophantine Equations. Ed.: Saradha N, Narosa Publishing House, New Delhi, 103-119, 2008.
2007
  1. Bérczes, A., Evertse, J., Győry, K.: Diophantine problems related to discriminants and resultants of binary forms.
    In: Diophantine geometry : proceedings. Ed.: by Umberto Zannier, Edizioni Della Normale, Pisa, 45-63, 2007. ISBN: 8876422065
  2. Bérczes, A., Evertse, J., Győry, K.: On the number of pairs of binary forms with given degree and given resultant.
    Acta Arith. 128 (1), 19-54, 2007.
    Folyóirat-mutatók:
    Q2 Algebra and Number Theory
  3. Győry, K., Pintér, Á.: On the resolution of equations Axn-Byn=C in integers x,y and n>=3, I.
    Publ. Math. Debrecen. 70 (3-4), 483-501, 2007.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
2006
  1. Bruin, N., Győry, K., Hajdu, L., Tengely, S.: Arithmetic progressions consisting of unlike powers.
    Indag. Math.-New Ser. 17 (4), 539-555, 2006.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  2. Bennett, M., Győry, K., Mignotte, M., Pintér, Á.: Binomial Thue equations and polynomial powers.
    Compos. Math. 142 (5), 1103-1121, 2006.
    Folyóirat-mutatók:
    D1 Algebra and Number Theory
  3. Győry, K., Yu, K.: Bounds for the solutions of S-unit equations and decomposable form equations.
    Acta Arith. 123 (1), 9-41, 2006.
    Folyóirat-mutatók:
    Q2 Algebra and Number Theory
  4. Győry, K.: Perfect Powers in Products with Consecutive Terms from Arithmetic Progressions.
    In: More Sets, Graphs and Numbers : A Salute to Vera Sós and András Hajnal / (eds.) Ervin Győri; Gyula O. H. Katona; László Lovász, Springer ; Budapest : Janos Bolyai Mathematical Society, Berlin ; New York, 143-155, 2006.
  5. Győry, K.: Polynomials and binary forms with given discriminant.
    Publ. Math.-Debr. 69 (4), 473-499, 2006.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
  6. Bennett, M., Bruin, N., Győry, K., Hajdu, L.: Powers from Products of Consecutive Terms in Arithmetic Progression.
    Proc. London Math. Soc. 92 (2), 273-306, 2006.
    Folyóirat-mutatók:
    D1 Mathematics (miscellaneous)
2005
  1. Győry, K., Pintér, Á.: Almost Perfect Powers in Products of Consecutive Integers.
    Monatsh. Math. 145 (1), 19-33, 2005.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  2. Csörgő, S., Győry, K., Császár, Á.: A matematikus öröksége: Tandori Károly (1925-2005) sírjánál.
    Szeged : a város folyóirata : várostörténet, kulturális és közéleti magazin 17 (3), 20-22, 2005.
  3. Győry, K., Hajdu, L., Saradha, N.: Correction to: On the Diophantine Equation n(n + d) · · · (n + (k - 1)d) = byl.
    Can. Math. Bul.-Bul. Can. Math. 48 (4), 636, 2005.
  4. Győry, K., Pintér, Á.: Correction to the paper "Almost perfect powers in products of consecutive integers" (Monatsh. Math. 145, 19-33 (2005)).
    Monatsh. Math. 146 (4), 341, 2005.
  5. Győry, K.: Index form equations and their applications.
    Natsiyanalnaya Akademiya Navuk Belarusi. Instytut Matematyki. Trudy 13 (1), 83-93, 2005.
  6. Everest, G., Győry, K.: On some arithmetical properties of solutions of decomposable form equations.
    Math. Proc. Camb. Philos. Soc. 139 (1), 27-40, 2005.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
2004
  1. Győry, K., Pethő, A., Pintér, Á.: Béla Brindza (1958-2003).
    Publ. Math. Debr. 65 (1-2), 1-11, 2004.
  2. Bilu, Y., Gaál, I., Győry, K.: Index form equations in sextic fields: a hard computation.
    Acta Arith. 115 (1), 85-96, 2004.
    Folyóirat-mutatók:
    Q2 Algebra and Number Theory
  3. Bugeaud, Y., Győry, K.: On binomial Thue-Mahler equations.
    Period. Math. Hung. 49 (2), 25-34, 2004.
    Folyóirat-mutatók:
    Q4 Mathematics (miscellaneous)
  4. Bennett, M., Győry, K., Pintér, Á.: On the Diophantine equation 1^k+2^k +...+ x^k = y^n.
    Compos. Math. 140 (6), 1417-1431, 2004.
    Folyóirat-mutatók:
    D1 Algebra and Number Theory
  5. Győry, K., Hajdu, L., Saradha, N.: On the Diophantine Equation n(n+d)...(n+(k-1)d)=byl.
    Can. Math. Bul.-Bul. Can. Math. 47 (3), 373-388, 2004.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  6. Bérczes, A., Evertse, J., Győry, K.: On the number of equivalence classes of binary forms of given degree and given discriminant.
    Acta Arith. 113 (4), 363-399, 2004.
    Folyóirat-mutatók:
    Q2 Algebra and Number Theory
  7. Győry, K., Hajdu, L., Pintér, Á., Schinzel, A.: Polynomials dertermined by a few of their coefficients.
    Indag. Math.-New Ser. 15 (2), 209-221, 2004.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
  8. Győry, K., Pink, I., Pintér, Á.: Power values of polynomials and binomial Thue-Mahler equations.
    Publ. Math. Debr. 65 (3-4), 341-362, 2004.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
2003
  1. Győry, K.: On some arithmetical properties of Lucas and Lehmer numbers, II.
    Acta Acad. Paed. Agr. Sect. Math. 30 67-73, 2003.
  2. Győry, K., Pintér, Á.: On the equation 1^k+2^k + ... + x^k=y^n.
    Publ. Math. Debrecen. 62 (3-4), 403-414, 2003.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
2002
  1. Győry, K.: On the number of primitive solutions of Thue equations and Thue inequalities.
    In: Paul Erdős and His Mathematics I-II / Gábor Halász, László Lovász, Miklós Simonovits, Vera T. Sós (eds.), Springer, Berlin, 279-294, 2002, (Bolyai Society Mathematical Studies, ISSN 1217-4696 ; 11) ISBN: 9783540422365
  2. Bérczes, A., Győry, K.: On the number of solutions of decomposable polynomial equations.
    Acta Arith. 101 (2), 171-187, 2002.
    Folyóirat-mutatók:
    Q1 Algebra and Number Theory
  3. Győry, K.: On the solutions of decomposable form equations.
    Rims Kokyuroku: Surikaisekikenkyusho Kokyuroku / Research Institute for Mathematical Sciences 1274 142-156, 2002.
  4. Everest, G., Gaál, I., Győry, K., Röttger, C.: On the spatial distribution of solutions of decomposable form equations.
    Math. Comput. 71 (238), 633-648, 2002.
    Folyóirat-mutatók:
    D1 Algebra and Number Theory
    D1 Applied Mathematics
    Q1 Computational Mathematics
  5. Győry, K.: Solving Diophantine Equations by Baker's Theory.
    In: A Panorama of Number Theory or The View from Baker's Garden / G. Wüstholz (ed.), Cambridge University Press, Cambridge, 38-72, 2002. ISBN: 0521807999
2001
  1. Győry, K.: Thue inequalities with a small number of primitive solutions.
    Period. Math. Hung. 42 (1-2), 199-209, 2001.
    Folyóirat-mutatók:
    Q4 Mathematics (miscellaneous)
2000
  1. Győry, K.: Discriminant form and index form equations.
    In: Algebraic Number Theory and Diophantine Analysis / F. Halter-Koch; Robert F. Tichy (eds.), Walter De Gruyter & Co, Berlin, 191-214, 2000, (De Gruyter Proceedings in Mathematics) ISBN: 3110163047
1999
  1. Gaál, I., Győry, K.: Index form equations in quintic fields.
    Acta Arith. 89 (4), 379-396, 1999.
    Folyóirat-mutatók:
    Q2 Algebra and Number Theory
  2. Kanemitsu, S., Győry, K.: Number Theory and Its Applications: Proceedings of the conference held at the RIMS, Kyoto, Japan, November 10-14, 1997.
    Kluwer Academic Publishers, Dordrecht, 384 p., 1999. ISBN: 9780792359524
  3. Győry, K., Iwaniec, H., Urbanowicz, J.: Number Theory in Progress: Proceedings of the International Conference on Number Theory organized by the Stefan Banach International Mathematical Center in honor of the 60th birthday of Andrzej Schinzel, Zakopane, Poland, June 30-July 9, 1997.
    Walter de Gruyter GmbH, Berlin, 1185 p., 1999. ISBN: 9783110157154
  4. Győry, K.: On the disrtibution of solutions decomposable form equations.
    In: Number Theory in Progress: Proceedings of the International Conference on Number Theory organized by the Stefan Banach International Mathematical Center in honor of the 60th birthday of Andrzej Schinzel, Zakopane, Poland, June 30-July 9, 1997. Ed.: Győry K, Iwaniec H , Urbanowicz J, Walter De Gruyter & Co, Berlin ; New-York, 237-265, 1999. ISBN: 9783110157154
  5. Győry, K.: Power values of products of consecutive integers and binomial coefficients.
    In: Number theory and its applications / Shigeru Kanemitsu; Kálmán Győry (eds.), Kluwer Academic Publisher, Dordrecht, 145-156, 1999, (Developments in Mathematics ; 2) ISBN: 0792359526
1998
  1. Győry, K.: Bounds for the solutions of decomposable form equations.
    Publ. Math. Debr. 52 (1-2), 1-31, 1998.
  2. Győry, K.: Diofantikus egyenletek.
    Természet világa. 3. klsz. 56-62, 1998.
  3. Győry, K., Ru, M.: Integer solutions of a sequence of decomposable form inequalities.
    Acta Arith. 86 (3), 227-237, 1998.
  4. Győry, K., Pethő, A., T. Sós, V.: Number theory: diophantine, computational, and algebraic aspects : proceedings of the international conference held in Eger, Hungary, July 29-August 2, 1996.
    Walter de Gruyter, Berlin ;, XVII, 595 p., 1998. ISBN: 3110153645
  5. Győry, K.: On the diophantine equation n(n+1)...(n+k-1)=bxl.
    Acta Arith. 83 (1), 87-92, 1998.
  6. Győry, K.: Power values of binomial coefficients.
    In: Number theory and its applications, Kyoto University, Kyoto, 124-136, 1998.
  7. Győry, K.: Recent bounds for the solutions of decomposable form equations.
    In: Number theory, Walter de Gruyter, Berlin, 255-270, 1998.
1997
  1. Everest, G., Győry, K.: Counting solutions of decomposable form equations.
    Acta Arith. 79 (2), 173-191, 1997.
  2. Győry, K., Sárközy, A.: On prime factors of integers of the form (ab+1)(bc+1)(ca+1).
    Acta Arith. 79 (2), 163-171, 1997.
  3. Győry, K.: On the diophantine equation (nk)=xl.
    Acta Arith. 80 (3), 289-295, 1997.
  4. Ádám, A., Győry, K., Sárközy, A.: The life and mathematics of Paul Erdős (1913-1996).
    Math. Jpn. 46 (3), 517-526, 1997.
  5. Evertse, J., Győry, K.: The number of families of solutions of decomposable form equations.
    Acta Arith. 80 (4), 367-394, 1997.
1996
  1. Győry, K.: Applications of unit equations.
    In: Analytic number theory, Kyoto University, Kyoto, 62-78, 1996.
  2. Bugeaud, Y., Győry, K.: Bounds for the solutions of Thue-Mahler equations and norm form equations.
    Acta Arith. 74 (3), 273-292, 1996.
  3. Bugeaud, Y., Győry, K.: Bounds for the solutions of unit equations.
    Acta Arith. 74 (1), 67-80, 1996.
  4. Győry, K., Sárközy, A., Stewart, C.: On the number of prime factors of integers of the form ab+1.
    Acta Arith. 74 (4), 365-385, 1996.
1995
  1. Győry, K.: On a problem of A. M. Odlyzko on algebraic units of bounded degree.
    Acta Math. Hung. 69 (1-2), 1-4, 1995.
1994
  1. Győry, K.: Császár Ákos 75 éves.
    Mat. Lapok. 4 (4), 9-10, 1994.
  2. Győry, K., Schinzel, A.: On a conjecture of Posner and Rumsey.
    J. Number Theory. 47 (1), 63-78, 1994.
  3. Győry, K.: On the irreducibility of neighbouring polynomials.
    Acta Arith. 67 (3), 283-294, 1994.
  4. Győry, K.: Upper bounds for the degrees of decomposable forms of given discriminant.
    Acta Arith. 66 (3), 261-268, 1994.
1993
  1. Evertse, J., Győry, K.: Lower bounds for resultants, I.
    Compos. Math. 88 (1), 1-23, 1993.
  2. Győry, K.: On pairs of binary forms with given resultant or given semi-resultant.
    Math. Pannon. 4 (2), 169-180, 1993.
  3. Győry, K.: On the number of pairs of polynomials with given resultant or given semi-resultant.
    Acta Sci. Math. 57 (1-4), 515-529, 1993.
  4. Győry, K.: On the numbers of families of solutions of systems of decomposable form equations.
    Publ. Math. Debr. 42 (1-2), 65-101, 1993.
  5. Győry, K.: Some applications of decomposable form equations to resultant equations.
    Colloq. Math. 65 (2), 267-275, 1993.
  6. Győry, K.: Some new results connected with resultants of polynomials and binary forms.
    Grazer math. Ber. 318 17-27, 1993.
1992
  1. Evertse, J., Győry, K.: Discriminants of decomposable forms.
    In: New Trends in Probability and Statistics, VSP, TEV, Utrecht, 39-56, 1992.
  2. Evertse, J., Győry, K.: Effective finiteness theorems for decomposable forms of given discriminant.
    Acta Arith. 60 (3), 233-277, 1992.
  3. Győry, K.: On arithemtic graphs associated with integral domains II.
    In: Sets, graphs and numbers: A birthday salute to Vera T. Sós and András Hajnal. Szerk.: Halász G., Lovász L., Miklós D., Szőnyi T, North-Holland Publishing Company - Budapest : BJMT, Amsterdam, 365-374, 1992. ISBN: 9638022698
  4. Győry, K.: On the irreducibility of a class of polynomials, IV.
    Acta Arith. 62 (4), 399-405, 1992.
  5. Győry, K.: Some recent applications of S-unit equations.
    Asterisque. 209 17-38, 1992.
  6. Győry, K.: Upper bounds for the numbers of solutions of unit equations in two unknowns.
    Lith. Math. J. 32 (1), 40-44, 1992.
1991
  1. Győry, K.: [Recenziók].
    Publ. Math. Debr. 39 (3-4), 359-360, 1991.
    (Ismertetett mű: Sharpe, D. -Rings and factorization /Cambridge : Cambridge Univ Press, 1987)
  2. Győry, K.: Az an +- bn alakú számok osztóiról két számelméleti feladat kapcsán.
    Középisk. Mat. Lapok. 41 (5), 193-201, 1991.
  3. Győry, K.: Berndt, B.C.- Diamond, H.G. - Halberstam, H. - Hildebrand, A, eds.: Analytic Number Theory. Birkahäuser, 1990..
    Publ. Math. Debr. 38 (3-4), 345, 1991.
    (Ismertetett mű: Berndt, B.C.- Diamond, H.G. - Halberstam, H. - Hildebrand, A, eds. -Analytic Number Theory /Boston : Birkahäuser, 1990)
  4. Brindza, B., Evertse, J., Győry, K.: Bounds for the solutions of some diophantine equations in terms of discriminants.
    J. Aust. Math. Soc. 51 (1), 8-26, 1991.
  5. Evertse, J., Győry, K.: Effective finiteness results for binary forms with given discriminant.
    Compos. Math. 79 (2), 169-204, 1991.
  6. Győry, K.: Goldstein, C. ed.: Séminaire de Théorie des Nombers, Paris, 1988-1989. Birkhäuser, 1990..
    Publ. Math. Debr. 38 (3-4), 346, 1991.
    (Ismertetett mű: Goldstein, C. ed. -Séminaire de Théorie des Nombers, Paris, 1988-1989 /Boston : Birkahäuser, 1990)
  7. Buchmann, J., Győry, K., Mignotte, M., Tzanakis, N.: Lower bounds for $P(x^3+k)$, an elementary approach.
    Publ. Math. Debr. 38 (1-2), 145-163, 1991.
  8. Győry, K., Pethő, A.: On second order linear divisibility sequences over algebraic number fields.
    Publ. Math. Debr. 39 (1-2), 171-179, 1991.
  9. Győry, K.: Rudolf Lidl-Harald Niederreiter: Introduction to finite fields and their applications, Cambridge Univ. Press, 1986..
    Publ. Math. Debr. 39 (1-2), 183, 1991.
    (Ismertetett mű: Rudolf Lidl-Harald Niederreiter. -Introduction to finite fields and their applications /Cambridge : Cambridge Univ. Press, 1986)
  10. Evertse, J., Győry, K.: Some results on Thue equations and Thue-Mahler equations.
    In: Computational Number Theory : Proceedings of the Colloquium on Computational Number Theory held at Kossuth Lajos University. Ed.: HG, Zimmer; A, Pethő; M, Pohst; HC, Williams, Walter de Gruyter GmbH, Berlin, 295-302, 1991. ISBN: 3110123940
  11. Evertse, J., Győry, K.: Thue inequalities with a small number of solutions.
    In: The mathematical heritage of C. F. Gauss : a collection of papers in memory of C. F. Gauss. Ed.: by George M. Rassias, World Scientific Publishing Co. Pte. Ltd, Singapore, 204-224, 1991. ISBN: 9810202016
1990
  1. Győry, K., Halász, G.: Number Theory: Volume I. Elementary and Analytic. Volume II. Diophantine and Algebraic.
    North-Holland Publ. Co. / Bolyai János Mat. Társulat, Amsterdam / Budapest, 1072 p., 1990. ISBN: 0444704760(Vol.I)
  2. Győry, K.: On arithmetic graphs associated with integral domains.
    In: A Tribute to Paul Erdős. Ed.: by A. Baker, B. Bollobás, A. Hajnal, Cambridge University Press, Cambridge, 207-222, 1990. ISBN: 0521381010
  3. Győry, K., Mignotte, M., Shorey, T.: On some arithmetical properties of weighted sums of S-units.
    Math. Pannon. 1 (2), 25-43, 1990.
  4. Evertse, J., Győry, K.: On the numbers of solutions of unit equations and decomposable polynominal equations.
    In: Number theory : Colloquia Mathematica Societatis János Bolyai 1. Elementary and analytic/ ed. K. Győry, G. Halász, János Bolyai Mathematical Society ; Amsterdam : North-Holland Publ. Comp, Budapest, 671-696, 1990.
  5. Brindza, B., Győry, K.: On unit equations with rational coefficients.
    Acta Arith. 53 (4), 367-388, 1990.
1989
  1. Evertse, J., Gaál, I., Győry, K.: On the numbers of solutions of decomposable polynomial equations.
    Arch. Math. 52 (4), 337-353, 1989.
  2. Evertse, J., Győry, K.: Thue-Mahler equations with a small number of solutions.
    J. Reine Angew. Math. 339 60-80, 1989.
1988
  1. Evertse, J., Győry, K.: Decomposable form equations.
    In: New Advances in Transcendence Theory / Alan Baker (ed.), Cambridge University Press, Cambridge, 175-202, 1988. ISBN: 0521335450
  2. Evertse, J., Győry, K.: Finiteness criteria for decomposable form equations.
    Acta Arith. 50 (4), 357-379, 1988.
  3. Győry, K., Stewart, C., Tijdeman, R.: On prime factors of sums of integers III.
    Acta Arith. 49 (3), 307-312, 1988.
  4. Evertse, J., Győry, K., Stewart, C., Tijdeman, R.: On S-unit equations in two unknowns.
    Invent. Math. 92 (3), 461-477, 1988.
  5. Győry, K., Shorey, T.: On the denominators of equivalent algebraic numbers.
    Indag. Math. New Ser. 50 (1), 29-41, 1988.
  6. Győry, K., Shorey, T.: On the denominators of equivalent algebraic numbers.
    Indagationes Mathematicae (Proceedings). 91 (1), 29-41, 1988.
  7. Evertse, J., Győry, K.: On the number of polynomials and integral elements of given discriminant.
    Acta Math. Hung. 51 (3-4), 341-362, 1988.
  8. Evertse, J., Győry, K.: On the numbers of solutions of weighted unit equations.
    Compos. Math. 66 (3), 329-354, 1988.
  9. Evertse, J., Győry, K., Stewart, C., Tijdeman, R.: S-unit equations and their applications.
    In: New Advances in Transcendence Theory / Alan Baker (ed.), Cambridge University Press, Cambridge, 110-174, 1988. ISBN: 0521335450
1987
  1. Voorhoeve, M., Győry, K., Tijdeman, R.: Correction to: On the diophantine equation 1k+2k+...+xk+R(x)=yz.
    Acta Math. 159 (1-2), 151-152, 1987.
  2. Evertse, J., Győry, K., Shorey, T., Tijdeman, R.: Equal values of binary forms at integral points.
    Acta Arith. 48 (4), 379-396, 1987.
1986
  1. Győry, K.: On prime factors of sums of integers I.
    Compos. Math. 59 (1), 81-88, 1986.
  2. Brindza, B., Győry, K., Tijdeman, R.: On the Catalan equation over algebraic number fields.
    J. Reine Angew. Math. 367 90-102, 1986.
1985
  1. Evertse, J., Győry, K.: On unit equations and decomposable form equations.
    J. Reine Angew. Math. 358 6-19, 1985.
  2. Brindza, B., Győry, K., Tijdeman, R.: The Fermat equation with polynomial values as base variables.
    Invent. Math. 80 (1), 139-151, 1985.
1984
  1. Győry, K.: Correction to the paper: Effective finiteness theorems for polynomials with given discriminant and integral elements with given discriminant over finitely generated domains (this Journal 346 (1984), 54-100).
    J. Reine Angew. Math. 347 167, 1984.
  2. Győry, K.: Effective finiteness theorems for polynomials with given discriminant and integral elements with given discriminant over finitely domains.
    J. Reine Angew. Math. 346 54-100, 1984.
  3. Győry, K.: Graphs associated with an integral domain and their applications.
    In: Finite and Infinite Sets I-II / A. Hajnal; L. Lovász; V. T. Sós (eds.), North-Holland Publ. Co., Amsterdam, 349-358, 1984, (Colloquia mathematica Societatis János Bolyai ; 37) ISBN: 9638021659
  4. Győry, K.: On norm from, discriminant from and index from equations.
    In: Topics in classical number theory, [S.n.], Budapest, 617-676, 1984, (Colloquia mathematica societatis János Bolyai)
  5. Győry, K.: Sur les générateurs des ordres monogénes des corps de nombres algébriques.
    Séminaire de Théorie des Nombres 1983-1984 1-12, 1984.
1983
  1. Győry, K.: Bounds for the solutions of norm form, discriminant form and index form equations in finitely generated integral domains.
    Acta Math. Hung. 42 (1-2), 45-80, 1983.
  2. Győry, K., Papp, Z.: Norm form equations and explicit lower bounds for linear forms with algebraic coefficients.
    In: Studies in Pure Mathematics / Paul Erdős (ed.), Birkhauser Verlag Ag, Basel, 245-257, 1983. ISBN: 3764312882
1982
  1. Győry, K.: On certain graphs associated with an integral domain and their applications to Diophantine problems.
    Publ. Math. Debr. 29 (1-2), 79-94, 1982.
  2. Győry, K.: On some arithmetical properties of Lucas and Lehmer numbers.
    Acta Arith. 40 (4), 369-373, 1982.
  3. Győry, K.: On the irreducibility of a class of polynomials, III.
    J. Number Theory. 15 (2), 164-181, 1982.
  4. Győry, K.: Polynomials of given discriminant and integral elements of given discriminant over integral domains.
    C. R. Math. Rep. Acad. Sci. Canada. 4 (2), 75-80, 1982.
1981
  1. Győry, K.: On discriminants and indices of integers of an algebraic number field.
    J. Reine Angew. Math. 324 114-126, 1981.
  2. Győry, K., Kiss, P., Schinzel, A.: On Lucas and Lehmer sequences and their applications to Diophantine equations.
    Colloq. Math. 45 (1), 75-80, 1981.
  3. Győry, K.: On S-integral solutions of norm form, discriminant form and index form equations.
    Stud. Sci. Math. Hung. 16 (1-2), 149-161, 1981.
  4. Győry, K.: On the representation of integers by decomposable forms in several variables.
    Publ. Math. Debr. 28 (1-2), 89-98, 1981.
1980
  1. Erdős, P., Papp, Z., Győry, K.: A szigma(n), fi(n), d(n) és v(n) függvények néhány új tulajdonságáról.
    Mat. Lapok. 28 (1-3), 125-131, 1980.
  2. Győry, K.: Corps de nombres algébriques d'anneau d'entiers monogéne.
    Semin. Théor Nr. 20 (2), 1-7, 1980.
  3. Győry, K.: Explicit lower bounds for linear forms with algebraic coefficients.
    Arch. Math. 35 (1), 438-446, 1980.
  4. Győry, K.: Explicit upper bounds for the solutions of some diophantine equations.
    Ann. Acad. Sci. Fenn Ser. A I Math. 5 (1), 3-12, 1980.
  5. Győry, K.: On certain graphs composed of algebraic integers of a number field and their applications I.
    Publ. Math. Debr. 27 (3-4), 229-242, 1980.
  6. Győry, K., Tijdeman, R., Voorhoeve, M.: On the equation 1^k+2^k+...+x^k=y^z.
    Acta Arith. 37 (1), 233-240, 1980.
  7. Győry, K.: On the solutions of linear Diophantine equations in algebraic integers of bounded norm.
    Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 22/23 225-233, 1980.
  8. Győry, K.: Résultats effectifs sur la représentation des entiers par des formes décomposables.
    Queen's University, Kingston, 142 p., 1980.
  9. Győry, K.: Sur certaines généralisations de l'équation de Thue-Mahler.
    Enseign. Math. 26 (3-4), 247-255, 1980.
  10. Győry, K.: Sur une generalisation de l'equation de Thue-Mahler.
    C. R. Acad. Sci. Paris Sér. A-B 290 (14), A633-A635, 1980.
  11. Győry, K., Pethő, A.: Über die Verteilung der Lösungen von Normformen Gleichungen III.
    Acta Arith. 37 143-165, 1980.
1979
  1. Győry, K.: Norm form equations.
    Séminaire de Théorie des Nombres 1978-1979 1-9, 1979.
  2. Voorhoeve, M., Győry, K., Tijdeman, R.: On the diophantine equation 1k+2k+...+xk+R(x)=yz.
    Acta Math. 143 (1), 1-8, 1979.
  3. Győry, K.: On the greatest prime factors of decomposable forms at integer points.
    Ann. Acad. Sci. Fenn. Ser. A I Math. 4 (2), 341-355, 1979.
  4. Győry, K.: On the number of solutions of linear equations in units of an algebraic number field.
    Comment. Math. Helv. 54 (1), 583-600, 1979.
1978
  1. Győry, K., Papp, Z.: Effective estimates for the interger solutions of norm form and discriminant form equations.
    Publ. Math. Debr. 25 (3-4), 311-325, 1978.
  2. Győry, K.: On polynomials with integer coefficients and given discriminant IV.
    Publ. Math. Debr. 25 (1-2), 155-167, 1978.
  3. Győry, K.: On polynomials with integer coefficients and given discriminant V, p-adic Generalizations.
    Acta Mathematica Academiae Scientiarum Hungaricae. 32 (1-2), 175-190, 1978.
1977
  1. Győry, K., Leahey, W.: A note on Hilbert class fields of algebraic number fields.
    Acta Mathematica Academiae Scientiarum Hungaricae. 29 (3-4), 251-254, 1977.
  2. Győry, K., Papp, Z.: On discriminant form and index form equations.
    Studia Scientiarum Mathematicarum Hungarica 12 (1-2), 47-60, 1977.
  3. Győry, K.: Représentation des nombres entiers par des formes binaires.
    Publ. Math. Debr. 24 (3-4), 363-375, 1977.
  4. Győry, K., Pethő, A.: Über die Verteilung der Lösungen von Normformen Gleichungen II.
    Acta Arith. 32 (4), 349-363, 1977.
1976
  1. Győry, K.: Polynomials with given discriminant.
    In: Topics in number theory / P. Turán (ed.), North-Holland Publ. Co., Amsterdam, 65-78, 1976, (Colloquia mathematica Societatis János Bolyai ; 13)
  2. Győry, K.: Sur les polynômes á coefficients entiers et de discriminant donné III.
    Publ. Math. Debr. 23 (1-2), 141-165, 1976.
1975
  1. Győry, K., Pethő, A.: Sur la distribution des solutions des équations du type "norme-forme".
    Acta Math. Hung. 26 (1-2), 135-142, 1975.
  2. Győry, K.: Sur une classe des corps de nombres algébriques et ses applications.
    Publ. Math. Debr. 22 (1-2), 151-175, 1975.
1974
  1. Győry, K.: Andor Kertész 1929-1974.
    Publ. Math. Debr. 21 (3-4), 159-160, 1974.
  2. Győry, K.: Sur les polynômes à coefficients entiers et de discriminant donné II.
    Publ. Math. Debr. 21 (1-2), 125-144, 1974.
1973
  1. Győry, K., Rimán, J.: Schur-típusú irreducibilitási tételekről.
    Mat. Lapok. 24 225-253, 1973.
  2. Győry, K.: Sur les polynômes á coefficients entiers et de discriminant donné.
    Acta Arith. 23 (4), 419-426, 1973.
1972
  1. Győry, K.: Sur l'irréductibilité d'une classe des polynômes II.
    Publ. Math. Debr. 19 (1-4), 293-326, 1972.
1971
  1. Győry, K.: Sur l'irréductibilité d'une classe des polynômes I.
    Publ. Math. Debr. 18 (1-4), 289-307, 1971.
1970
  1. Győry, K., Lovász, L.: Representation of integers by norm forms II.
    Publ. Math. Debr. 17 (1-4), 173-181, 1970.
  2. Győry, K.: Sur une classe des équations diophantiques.
    In: Number Theory / P. Turán (ed. by), North-Holland Publ. Co., Amsterdam, 111-116, 1970, (Colloquia mathematica Societatis János Bolyai ; 2) ISBN: 720420377
1969
  1. Győry, K.: Note on the paper of W. M. Schmidt "Some diophantine equations in three variables with only finitely many solutions".
    Ann. Univ. Sci. Budapest. Eötvös Sect. Math. 12 67-71, 1969.
  2. Győry, K.: Représentation des nombres par des formes décomposables. I.
    Publ. Math. Debr. 16 (1-4), 253-263, 1969.
1968
  1. Győry, K., Kovács, B.: Egy számelméleti kongruenciáról.
    Mat. Lapok. 19 109-116, 1968.
  2. Győry, K.: Sur une classe des équations diophantiennes.
    Publ. Math. Debr. 15 (1-4), 165-179, 1968.
1967
  1. Győry, K.: Az x^p+y^p=cz^p diofantoszi egyenletről.
    Mat. Lapok. 18 (1-2), 93-96, 1967.
  2. Győry, K.: Note sur un théoréme de H. Davenport et de K. F. Roth.
    Publ. Math. Debr. 14 (1-4), 331-335, 1967.
1966
  1. Daróczy, Z., Győry, K.: Die Cauchysche Funktionalgleichung über diskrete Mengen.
    Publ. Math. Debr. 13 (1-4), 249-255, 1966.
  2. Győry, K.: Über die diophantische Gleichung x^p+y^p=cz^p.
    Publ. Math. Debr. 13 (1-4), 301-305, 1966.
1965
  1. Pethő, Á., Győry, K.: Homogén lineáris egyenletrendszerek "sok" zérust tartalmazó megoldásairól.
    Mat. Lapok. 16 267-273, 1965.
1963
  1. Győry, K.: Az (n \choose 2)=a^l és (n \choose 3)=a^l diofantoszi egyenletekről.
    Mat. Lapok. 14 322-329, 1963.
feltöltött közlemény: 206 Open Access: 15
https://tudoster.idea.unideb.hu
A szolgáltatást nyújtja: DEENK