Tudóstér: Nagy Ágnes publikációi

PDF
-
szűkítés
feltöltött közlemény: 231 Open Access: 69
2024
  1. Nagy, Á.: Density functional theory from spherically symmetric densities: Ground and excited states of Coulomb systems.
    J. Chem. Phys. 161 (4), 1-21, 2024.
    Folyóirat-mutatók:
    Q1 Medicine (miscellaneous) (2023)
    Q1 Physical and Theoretical Chemistry (2023)
    Q1 Physics and Astronomy (miscellaneous) (2023)
  2. Nagy, Á.: Phase-space relative Rényi entropy in density functional theory.
    Int. J. Quantum Chem. 124 (1), 1-8, 2024.
    Folyóirat-mutatók:
    Q3 Atomic and Molecular Physics, and Optics (2023)
    Q3 Condensed Matter Physics (2023)
    Q3 Physical and Theoretical Chemistry (2023)
2023
  1. Nagy, Á.: Excited-state density functional theory.
    In: Chemical Reactivity Volume 1: Theories and Principles / Savas Kaya, Laszlo von Szentpaly, Goncagul Serdaroglu, Lei Guo, Elsevier, Amsterdam, 251-261, 2023. ISBN: 9780323902571
  2. Nagy, Á.: Spherical densities and potentials in exactly solvable model molecules.
    J. Chem. Phys. 159 (14), 1-16, 2023.
    Folyóirat-mutatók:
    Q1 Medicine (miscellaneous)
    Q1 Physical and Theoretical Chemistry
    Q1 Physics and Astronomy (miscellaneous)
  3. Nagy, Á.: Spherical Subspace Potential Functional Theory.
    Computation. 11 (6), 1-15, 2023.
    Folyóirat-mutatók:
    Q3 Applied Mathematics
    Q2 Computer Science (miscellaneous)
    Q3 Modeling and Simulation
    Q3 Theoretical Computer Science
2022
  1. Nagy, Á., Sen, K.: Nuclear cusp and critical nuclear charge.
    Mol. Phys. 121 e2131643, 2022.
    Folyóirat-mutatók:
    Q3 Biophysics
    Q3 Condensed Matter Physics
    Q4 Molecular Biology
    Q3 Physical and Theoretical Chemistry
  2. Nagy, Á.: Orbital-free spherical density functional theory.
    Lett. Math. Phys. 112 (5), 112-107, 2022.
    Folyóirat-mutatók:
    Q2 Mathematical Physics
    Q2 Statistical and Nonlinear Physics
  3. Nagy, Á.: Phase-space Rényi entropy, complexity and thermodynamic picture of density functional theory.
    J. Math. Chem. 612022.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q2 Chemistry (miscellaneous)
2021
  1. Nagy, Á.: Density Functional Theory of Coulombic Excited States Based on Nodal Variational Principle.
    Computation. 9 (8), 1-6, 2021.
    Folyóirat-mutatók:
    Q3 Applied Mathematics
    Q2 Computer Science (miscellaneous)
    Q3 Modeling and Simulation
    Q3 Theoretical Computer Science
  2. Nagy, Á.: Density Functional Theory of Highly Excited States of Coulomb Systems.
    Computation. 9 (6), 1-12, 2021.
    Folyóirat-mutatók:
    Q3 Applied Mathematics
    Q2 Computer Science (miscellaneous)
    Q3 Modeling and Simulation
    Q3 Theoretical Computer Science
  3. Nagy, Á.: Fisher information and density functional theory.
    Int. J. Quantum Chem. [Epub ahead of print] 1-18, 2021.
    Folyóirat-mutatók:
    Q2 Atomic and Molecular Physics, and Optics
    Q2 Condensed Matter Physics
    Q2 Physical and Theoretical Chemistry
  4. Nagy, Á.: Subspace theory with spherically symmetric densities.
    J. Chem. Phys. 154 (7), 1-18, 2021.
    Folyóirat-mutatók:
    Q1 Medicine (miscellaneous)
    Q1 Physical and Theoretical Chemistry
    Q1 Physics and Astronomy (miscellaneous)
2020
  1. Nagy, Á.: Information theoretical and thermodynamic view of the excited-state density functional theory of Coulomb systems.
    J. Chem. Phys. 153 (15), 1-16, 2020.
    Folyóirat-mutatók:
    Q1 Medicine (miscellaneous)
    Q1 Physical and Theoretical Chemistry
    Q1 Physics and Astronomy (miscellaneous)
  2. Nagy, Á.: Relative information in excited-state orbital-free density functional theory.
    Int. J. Quantum Chem. 120 (23), 1-10, 2020.
    Folyóirat-mutatók:
    Q2 Atomic and Molecular Physics, and Optics
    Q2 Condensed Matter Physics
    Q3 Physical and Theoretical Chemistry
  3. Nagy, Á.: Spherical Density Functional Theory and Atoms in Molecules.
    J. Phys. Chem. A. 124 (1), 148-151, 2020.
    Folyóirat-mutatók:
    Q2 Medicine (miscellaneous)
    Q2 Physical and Theoretical Chemistry
2019
  1. Nagy, Á.: A thermal orbital-free density functional approach.
    J. Chem. Phys. 151 (1), 1-12, 2019.
    Folyóirat-mutatók:
    Q1 Medicine (miscellaneous)
    Q1 Physical and Theoretical Chemistry
    Q1 Physics and Astronomy (miscellaneous)
  2. Nagy, Á.: Coordinate Scaling in Time-Independent Excited-State Density Functional Theory for Coulomb Systems.
    Computation. 7 (4), 1-6, 2019.
    Folyóirat-mutatók:
    Q3 Applied Mathematics
    Q2 Computer Science (miscellaneous)
    Q3 Modeling and Simulation
    Q3 Theoretical Computer Science
  3. Tian, L., Levämäki, H., Kuisma, M., Kokko, K., Nagy, Á., Vitos, L.: Density functional theory description of random Cu-Au alloys.
    Phys. Rev. B. 99 (6), 1-9, 2019.
    Folyóirat-mutatók:
    D1 Condensed Matter Physics
    D1 Electronic, Optical and Magnetic Materials
  4. Tian, L., Levämäki, H., Eriksson, O., Kokko, K., Nagy, Á., Délczeg-Czirják, E., Vitos, L.: Density Functional Theory description of the order-disorder transformation in Fe-Ni.
    Sci. Rep. 9 (1), 1-7, 2019.
    Folyóirat-mutatók:
    D1 Multidisciplinary
  5. Nagy, Á.: Gerjesztett állapotok sűrűségfunkcionál-elmélete.
    Magy. Kém. F. 125 (3), 123-129, 2019.
  6. Bolívar, J., Nagy, Á., Romera, E.: Phase-space Fisher information of 2D gapped Dirac materials.
    J. Math. Chem. 57 (4), 1169-1180, 2019.
    Folyóirat-mutatók:
    Q3 Applied Mathematics
    Q3 Chemistry (miscellaneous)
2018
  1. Nagy, Á.: Density functional theory from spherically symmetric densities.
    J. Chem. Phys. 149 (20), 1-9, 2018.
    Folyóirat-mutatók:
    Q1 Medicine (miscellaneous)
    Q1 Physical and Theoretical Chemistry
    Q1 Physics and Astronomy (miscellaneous)
  2. Bolívar, J., Cordero, N., Nagy, Á., Romera, E.: Fidelity as a marker of topological phase transitions in 2D Dirac materials.
    Int. J. Quantum Chem. 118 (17), e25674-, 2018.
    Folyóirat-mutatók:
    Q1 Atomic and Molecular Physics, and Optics
    Q1 Condensed Matter Physics
    Q2 Physical and Theoretical Chemistry
  3. Levämäki, H., Nagy, Á., Vilja, I., Kokko, K., Vitos, L.: Kullback-Leibler and relative Fisher information as descriptors of locality.
    Int. J. Quantum Chem. 118 (12), e25557-, 2018.
    Folyóirat-mutatók:
    Q1 Atomic and Molecular Physics, and Optics
    Q1 Condensed Matter Physics
    Q2 Physical and Theoretical Chemistry
  4. Nagy, Á.: Orbital-free density functional theory: Pauli potential and density scaling.
    In: Many-body approaches at different scales: A tribute to N.H. March on the occasion of his 90th birthday. Ed.: G. G. N. Angilella, C. Amovilli, Springer, Cham, Switzerland, 253-260, 2018. ISBN: 9783319723730
  5. Nagy, Á.: Phase space view of ensembles of excited states.
    Acta Phys. -Chim. Sin. 34 (5), 492-496, 2018.
    Folyóirat-mutatók:
    Q4 Physical and Theoretical Chemistry
  6. Bolívar, J., Nagy, Á., Romera, E.: Rényi-Fisher entropy product as a marker of topological phase transitions.
    Physica A. 498 66-73, 2018.
    Folyóirat-mutatók:
    Q2 Condensed Matter Physics
    Q2 Statistics and Probability
  7. Nagy, Á.: Thermodynamical transcription of density functional theory with minimum Fisher information.
    Chem. Phys. Lett. 695 149-152, 2018.
    Folyóirat-mutatók:
    Q2 Physical and Theoretical Chemistry
    Q2 Physics and Astronomy (miscellaneous)
  8. Nagy, Á.: Time-dependent pair density from the principle of minimum Fisher information.
    J. Mol. Model. 24 (9), 234, 2018.
    Folyóirat-mutatók:
    Q3 Catalysis
    Q3 Computational Theory and Mathematics
    Q3 Computer Science Applications
    Q3 Inorganic Chemistry
    Q3 Organic Chemistry
    Q3 Physical and Theoretical Chemistry
  9. Nagy, Á.: Time-dependent pair density functional theory.
    Eur. Phys. J. B. 91 (6), 110, 2018.
    Folyóirat-mutatók:
    Q2 Condensed Matter Physics
    Q2 Electronic, Optical and Magnetic Materials
  10. Ayers, P., Levy, M., Nagy, Á.: Time-independent density functional theory for degenerate excited states of Coulomb systems.
    Theor. Chem. Acc. 137 (11), 1-6, 2018.
    Folyóirat-mutatók:
    Q3 Physical and Theoretical Chemistry
2017
  1. Mayer, I., Pápai, I., Bakó, I., Nagy, Á.: Conceptual Problem with Calculating Electron Densities in Finite Basis Density Functional Theory.
    J. Chem. Theory Comput. 13 (9), 3961-3963, 2017.
    Folyóirat-mutatók:
    D1 Computer Science Applications
    D1 Physical and Theoretical Chemistry
  2. Godó, B., Nagy, Á.: Fisher information and Rényi entropies in dynamical systems.
    Chaos. 27 (7), 073104-, 2017.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q2 Mathematical Physics
    Q2 Medicine (miscellaneous)
    Q2 Physics and Astronomy (miscellaneous)
    Q2 Statistical and Nonlinear Physics
  3. Godó, B., Nagy, Á.: Fisher information and topological pressure.
    J. Math. Phys. 58 (5), 052702-, 2017.
    Folyóirat-mutatók:
    Q2 Mathematical Physics
    Q3 Statistical and Nonlinear Physics
  4. Nagy, Á., Romera, E.: Link between generalized nonidempotency and complexity measures.
    J. Mol. Model. 23 (5), 159, 2017.
    Folyóirat-mutatók:
    Q4 Catalysis
    Q3 Computational Theory and Mathematics
    Q3 Computer Science Applications
    Q3 Inorganic Chemistry
    Q3 Organic Chemistry
    Q3 Physical and Theoretical Chemistry
  5. Nagy, Á.: Thermodynamical transcription of the density functional theory with constant temperature.
    Int. J. Quantum Chem. 117 (16), e25396-, 2017.
    Folyóirat-mutatók:
    Q1 Atomic and Molecular Physics, and Optics
    Q1 Condensed Matter Physics
    Q2 Physical and Theoretical Chemistry
2016
  1. Nagy, Á.: Advances in DFT.
    Int. J. Quantum Chem. 116 801, 2016.
    Folyóirat-mutatók:
    Q1 Atomic and Molecular Physics, and Optics
    Q1 Condensed Matter Physics
    Q1 Physical and Theoretical Chemistry
  2. Nagy, Á.: Euler equation for descriptors of the Spherically symmetric Coulomb systems.
    Int. J. Quantum Chem. 116 (11), 862-866, 2016.
    Folyóirat-mutatók:
    Q1 Atomic and Molecular Physics, and Optics
    Q1 Condensed Matter Physics
    Q1 Physical and Theoretical Chemistry
  3. Tian, L., Levämäki, H., Ropo, M., Kokko, K., Nagy, Á., Vitos, L.: Exchange-Correlation Catastrophe in Cu-Au: A Challenge for Semilocal Density Functional Approximations.
    Phys. Rev. Lett. 117 (6), 066401, 2016.
    Folyóirat-mutatók:
    D1 Physics and Astronomy (miscellaneous)
  4. Godó, B., Nagy, Á.: Fisher information and Rényi dimension: A thermodynamic formalism.
    Chaos. 26 (8), 083102, 2016.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q2 Mathematical Physics
    Q2 Medicine (miscellaneous)
    Q2 Physics and Astronomy (miscellaneous)
    Q2 Statistical and Nonlinear Physics
  5. Nagy, Á.: Phase space view of quantum mechanical systems and Fisher information.
    Phys. Lett. A. 380 (27-28), 2200-2203, 2016.
    Folyóirat-mutatók:
    Q2 Physics and Astronomy (miscellaneous)
  6. Nagy, Á., Schwarz, K.: Special Issue "50th Anniversary of the Kohn-Sham Theory-Advances in Density Functional Theory".
    Computation. 4 (4), 45(1-5), 2016.
2015
  1. Levämäki, H., Nagy, Á., Kokko, K., Vitos, L.: Alternative to the Kohn-Sham equations: the Pauli potential differential equation.
    Phys. Rev. A. 92 (6), 1-5, 2015.
    Folyóirat-mutatók:
    Q1 Atomic and Molecular Physics, and Optics
  2. Ayers, P., Levy, M., Nagy, Á.: Communication: Kohn-Sham theory for excited states of Coulomb systems.
    J. Chem. Phys. 143 (19), 1-4, 2015.
    Folyóirat-mutatók:
    Q1 Medicine (miscellaneous)
    Q1 Physical and Theoretical Chemistry
    Q1 Physics and Astronomy (miscellaneous)
  3. Nagy, Á.: Density scaling and virial theorem.
    Mol. Phys. 113 1-4, 2015.
    Folyóirat-mutatók:
    Q2 Biophysics
    Q2 Condensed Matter Physics
    Q3 Molecular Biology
    Q2 Physical and Theoretical Chemistry
  4. Godó, B., Nagy, Á.: Detecting regular and chaotic behaviour in the parameter space by generalised statistical complexity measures.
    Chaos Solitons Fractals. 78 26-32, 2015.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  5. Nagy, Á., Romera, E.: Relative Rényi entropy and fidelity susceptibility.
    Europhys. lett. 109 (6), 60002-, 2015.
    Folyóirat-mutatók:
    Q2 Physics and Astronomy (miscellaneous)
2014
  1. Romera, E., Calixto, M., Nagy, Á.: Complexity measure and quantum shape-phase transitions in the two-dimensional limit of the vibron model.
    J. Mol. Model. 20 (7), 2237-1, 2014.
    Folyóirat-mutatók:
    Q3 Catalysis
    Q3 Computational Theory and Mathematics
    Q2 Computer Science Applications
    Q3 Inorganic Chemistry
    Q3 Organic Chemistry
    Q3 Physical and Theoretical Chemistry
  2. Levämäki, H., Nagy, Á., Kokko, K., Vitos, L.: Cusp relation for the Pauli potential.
    Phys. Rev. A. 90 (6), 062515, 2014.
    Folyóirat-mutatók:
    D1 Atomic and Molecular Physics, and Optics
  3. Nagy, Á.: Excited-state pair-density-functional theory.
    Phys. Rev. A. 90 (2), 022505, 2014.
    Folyóirat-mutatók:
    D1 Atomic and Molecular Physics, and Optics
  4. Nagy, Á., Romera, E.: Fisher and Shannon information from one-matrix: Link to the kinetic energy.
    Chem. Phys. Lett. 597 139-142, 2014.
    Folyóirat-mutatók:
    Q2 Physical and Theoretical Chemistry
    Q2 Physics and Astronomy (miscellaneous)
  5. Nagy, Á.: Fisher and Shannon Information in Orbital-Free Density Functional Theory.
    Int. J. Quantum Chem. 114 24812, 2014.
    Folyóirat-mutatók:
    Q2 Atomic and Molecular Physics, and Optics
    Q2 Condensed Matter Physics
    Q3 Physical and Theoretical Chemistry
  6. Nagy, Á.: Local thermodynamical formalism for ensembles of excited states.
    Indian J. Chem., A. 53A 965-969, 2014.
    Folyóirat-mutatók:
    Q4 Inorganic Chemistry
    Q4 Physical and Theoretical Chemistry
2013
  1. Nagy, Á., Calixto, M., Romera, E.: A density functional view of quantum phase transitions.
    J. Chem. Theor. Comput. 9 (2), 1052-1072, 2013.
    Folyóirat-mutatók:
    D1 Computer Science Applications
    D1 Physical and Theoretical Chemistry
  2. Godó, B., Nagy, Á.: Characterization of Rössler and Duffing maps with Rényi entropy and generalized complexity measures.
    J. Phys. Conf. Ser. 410 012090, 2013.
  3. Romera, E., Nagy, Á.: Density functional fidelity susceptibility and Kullback-Leibler entropy.
    Phys. Lett. A. 377 (43), 3098 - 3101, 2013.
    Folyóirat-mutatók:
    Q2 Physics and Astronomy (miscellaneous)
  4. Nagy, Á.: Electron density scaling: An extension to multi-component density functional theory.
    In: Theoretical and Computational Developments in Modern Density Functional Theory. Ed.: A. K. Roy, Nova, New York, 189-199, 2013. ISBN: 9781619427792
  5. Nagy, Á.: Kinetic Energy and Fisher Information.
    In: Recent Advances in Orbital-free Density Functional Theory / Y. A. Wang , T. A. Wesolowski, World Scientific, Singapore, 397-410, 2013. ISBN: 9789814436724
  6. Nagy, Á., Romera, E., Liu, S.: Local coordinate, wave vector, Fisher and Shannon information in momentum representation.
    Phys. Lett. A. 377 (3-4), 286-290, 2013.
    Folyóirat-mutatók:
    Q2 Physics and Astronomy (miscellaneous)
  7. Nagy, Á.: Local virial theorem for ensembles of excited states.
    In: Concepts and methods in modern theoretical chemistry. Ed.: S. K. Ghosh, P. K. Chattaraj, CRC Press, Boca Raton, 135-142, 2013. ISBN: 9781466505285
  8. Nagy, Á., Romera, E.: Quantum phase transitions via density functional theory: Extension to degenerate case.
    Phys. Rev. A. 88 (4), 042515, 2013.
    Folyóirat-mutatók:
    D1 Atomic and Molecular Physics, and Optics
  9. Nagy, Á.: Relationship between the Effective Potentials Determining the Density and the Pair Density.
    Comput Theor Chem. 1003 97-100, 2013.
    Folyóirat-mutatók:
    Q3 Biochemistry
    Q2 Condensed Matter Physics
    Q3 Physical and Theoretical Chemistry
  10. Romera, E., Real, R., Calixto, M., Nagy, S., Nagy, Á.: Renyi entropy of the U(3) vibron model.
    J. Math. Chem. 51 (2), 620-636, 2013.
    Folyóirat-mutatók:
    Q3 Applied Mathematics
    Q2 Chemistry (miscellaneous)
  11. Nagy, Á.: Shannon Entropy Density as a Descriptor of Coulomb Systems.
    Chem. Phys. Lett. 556 355-358, 2013.
    Folyóirat-mutatók:
    Q2 Physical and Theoretical Chemistry
    Q2 Physics and Astronomy (miscellaneous)
  12. Nagy, Á.: Theory of excited states of finite systems in Coulomb external potential.
    J. Phys. Conf. Ser. 410 012155, 2013.
2012
  1. Nagy, Á.: Density Scaling for Excited States.
    In: Advances in the Theory of Quantum Systems in Chemistry and Physics / Philip E. E. Hoggan, Erkki J. J. Brändas, Jean Maruani, Piotr Piecuch and Gerardo Delgado-Barrio, Springer, Berlin, 185-198, 2012, (Progress in Theoretical Chemistry and Physics ; 22.)
  2. Romera, E., Calixto, M., Nagy, Á.: Entropic uncertainty and the quantum phase transition in the Dicke model.
    Europhys. lett. 97 (2), 20011, 2012.
    Folyóirat-mutatók:
    Q2 Physics and Astronomy (miscellaneous)
  3. Nagy, Á., Romera, E.: Fisher entropy, Renyi entropy power and quantum phase transition in the Dicke model.
    Physica A. 391 (13), 3650-3655, 2012.
    Folyóirat-mutatók:
    Q2 Condensed Matter Physics
    Q2 Statistics and Probability
  4. Godó, B., Nagy, Á.: Generalized complexity measures and chaotic maps.
    Chaos. 22 (2), 023118, 2012.
    Folyóirat-mutatók:
    Q1 Applied Mathematics
    Q1 Mathematical Physics
    Q1 Medicine (miscellaneous)
    Q1 Physics and Astronomy (miscellaneous)
    Q2 Statistical and Nonlinear Physics
  5. Hornyák, I., Nagy, Á.: Inequalities for Phase-Space Renyi entropies.
    Int. J Quant. Chem. 112 (5), 1285-1290, 2012.
    Folyóirat-mutatók:
    Q2 Atomic and Molecular Physics, and Optics
    Q2 Condensed Matter Physics
    Q3 Physical and Theoretical Chemistry
  6. March, N., Nagy, Á., Bogar, F., Bartha, F.: Pauli potential functional for spherical inhomogenous electron liquids generated by a bare Coulomb field.
    Phys. Chem. Liq. 50 (3), 412-414, 2012.
    Folyóirat-mutatók:
    Q3 Condensed Matter Physics
    Q3 Electronic, Optical and Magnetic Materials
    Q2 Materials Chemistry
    Q3 Physical and Theoretical Chemistry
  7. Romera, E., Real, R., Calixto, M., Nagy, S., Nagy, Á.: Rényi entropy of the U(3) vibron model.
    J. Math. Chem. 51 (2), 620-636, 2012.
    Folyóirat-mutatók:
    Q3 Applied Mathematics
    Q2 Chemistry (miscellaneous)
  8. Calixto, M., Nagy, Á., Paradela, I., Romera, E.: Signatures of quantum fluctuations in the Dicke model by means of Renyi uncertainty.
    Phys. Rev. A. 85 (85), 053813, 2012.
    Folyóirat-mutatók:
    D1 Atomic and Molecular Physics, and Optics
  9. Iwasaki, H., Kawai, J., Yuge, K., Nagy, Á.: Similarity between blackbody and by synchrotron radiation analyzed by Tsallis entropy.
    X-ray spectrom. 41 (3), 125-127, 2012.
    Folyóirat-mutatók:
    Q2 Spectroscopy
  10. March, N., Nagy, Á.: Some model inhomogeneous electron liquid in D dimensions: relation between energy and chemical potential and a spatial generalisation of Kato's nuclear cusp theorem.
    Phys. Chem. Liq. 50 (2), 266-270, 2012.
    Folyóirat-mutatók:
    Q3 Condensed Matter Physics
    Q3 Electronic, Optical and Magnetic Materials
    Q2 Materials Chemistry
    Q3 Physical and Theoretical Chemistry
  11. Ayers, P., Levy, M., Nagy, Á.: Time-independent density-functional theory for excited states of Coulomb systems.
    Phys. Rev. A. 85 042518, 2012.
    Folyóirat-mutatók:
    D1 Atomic and Molecular Physics, and Optics
2011
  1. Romera, E., Sen, K., Nagy, Á.: A generalized relative complexity measure.
    J. Stat. Mech. P09016, 2011.
    Folyóirat-mutatók:
    Q3 Statistical and Nonlinear Physics
    Q3 Statistics and Probability
    Q3 Statistics, Probability and Uncertainty
  2. Nagy, Á.: Density and Pair Density Scaling in Density and Pair Density Functional Theories.
    Phys. Rev. A. 84 (3), 032506, 2011.
    Folyóirat-mutatók:
    D1 Atomic and Molecular Physics, and Optics
  3. Nagy, Á.: Density scaling for multiplets.
    J. Phys. B. 44 (3), 1-6, 2011.
    Folyóirat-mutatók:
    Q1 Atomic and Molecular Physics, and Optics
    Q1 Condensed Matter Physics
  4. Nagy, Á., Sen, K.: Fisher information from the pair density.
    Acta phys. Debr. 45 105-110, 2011.
  5. Nagy, Á.: Functional derivative of the kinetic energy functional for spherically symmetric systems.
    J. Chem. Phys. 135 044106, 2011.
    Folyóirat-mutatók:
    D1 Medicine (miscellaneous)
    Q1 Physical and Theoretical Chemistry
    D1 Physics and Astronomy (miscellaneous)
  6. Nagy, Á.: Improving the elasticity of hip muscles among the population of Debrecen University students.
    Rom. J. Phys. Ther. 17 (27), 21-26, 2011.
  7. Nagy, Á., Romera, E.: Rényi entropy and complexity.
    In: Statistical Complexity : applications in electronic structure / K. D. Sen, editor, Springer, New York, 215-235, 2011.
  8. Romera, E., Nagy, Á.: Renyi entropy and quantum phase transition in the Dicke model.
    Phys. Lett. A. 375 (34), 3066-3069, 2011.
    Folyóirat-mutatók:
    Q2 Physics and Astronomy (miscellaneous)
  9. March, N., Nagy, Á.: Scaling of some chemical properties of tetrahedral and octahedral molecules plus almost spherical C and B cages.
    J. Math. Chem. 49 (10), 2268-2274, 2011.
    Folyóirat-mutatók:
    Q3 Applied Mathematics
    Q2 Chemistry (miscellaneous)
2010
  1. Amovilli, C., Nagy, Á.: Erratum: "Modeling the Pauli Potential in the Pair Density Functional Theory.
    J. Chem. Phys. 132 (10), 109902-1-2, 2010.
    Folyóirat-mutatók:
    D1 Medicine (miscellaneous)
    Q1 Physical and Theoretical Chemistry
    Q1 Physics and Astronomy (miscellaneous)
  2. Nagy, Á., Amovilli, C.: Ground- and excited-state cusp conditions for the pair density.
    Phys. Rev. A. 82 042510-1-6, 2010.
    Folyóirat-mutatók:
    D1 Atomic and Molecular Physics, and Optics
  3. March, N., Nagy, Á.: Proposed approximate relation in inhomogeneous electron liquids between exchange-only potential and its Slater conterpart.
    Phys. Chem. Liq. 48 648-651, 2010.
    Folyóirat-mutatók:
    Q3 Condensed Matter Physics
    Q3 Electronic, Optical and Magnetic Materials
    Q3 Materials Chemistry
    Q3 Physical and Theoretical Chemistry
  4. Nagy, Á., Romera, E.: Relation between Fisher measures of information coming from pair distribution functions.
    Chem. Phys. Lett. 490 (4-6), 242-244, 2010.
    Folyóirat-mutatók:
    Q1 Physical and Theoretical Chemistry
    Q1 Physics and Astronomy (miscellaneous)
  5. Nagy, Á.: The Pauli potential from the differential virial theorem.
    Int. J. Quant. Chem. 110 (12), 2117-2120, 2010.
  6. March, N., Nagy, Á.: The Pauli potential in terms of kinetic energy density and electron density in the leading Coulombic term of the non-relativistic 1/Z expansion of spherical atomic ions.
    Phys. Rev. A. 81 (1), 014502-1-2, 2010.
    Folyóirat-mutatók:
    D1 Atomic and Molecular Physics, and Optics
  7. Nagy, Á.: Time-dependent density functional theory as a thermodynamics.
    J. mol. struct. Theochem. 943 (1-2), 48-52, 2010.
2009
  1. Romera, E., Lopez-Ruiz, R., Sañudo, J., Nagy, Á.: A generalized statistical complexity and Fisher-Rényi product in the H-atom.
    Int. Rev. Phys. 3 (4), 207-211, 2009.
  2. Lopez-Ruiz, R., Nagy, Á., Romera, E., Sañudo, J.: A generalized statistical complexity measure: applications to quantum sysytems.
    J. Math. Phys. 50 123528 -10, 2009.
    Folyóirat-mutatók:
    Q2 Mathematical Physics
    Q2 Statistical and Nonlinear Physics
  3. Tsirelson, V., Nagy, Á.: Binding entropy and its application to solids.
    J. Phys. Chem. A. 113 9022-9029, 2009.
    Folyóirat-mutatók:
    D1 Medicine (miscellaneous)
    Q1 Physical and Theoretical Chemistry
  4. Nagy, Á.: Entropic uncertainty relations.
    Acta Phys. Debr. 43 37-43, 2009.
  5. Nagy, Á., Amovilli, C.: Exact differential and integral constraints for the Pauli potential in the pair density functional theory.
    Chem. Phys. Lett. 469 353-356, 2009.
    Folyóirat-mutatók:
    Q1 Physical and Theoretical Chemistry
    Q1 Physics and Astronomy (miscellaneous)
  6. Amovilli, C., March, N., Nagy, Á.: Exact integral relation between the triplet correlation function in the ground state of the completely polarized homogeneous electron fluid and the pair function: comparison with the classical liquid argon result.
    Phys. Chem. Liq. 47 5-8, 2009.
    Folyóirat-mutatók:
    Q3 Condensed Matter Physics
    Q3 Electronic, Optical and Magnetic Materials
    Q2 Materials Chemistry
    Q3 Physical and Theoretical Chemistry
  7. Nagy, Á., Sen, K., Montgomery, H.: LMC complexity for the ground states of different quantum systems.
    Phys. Lett. A. 373 2552-2555, 2009.
    Folyóirat-mutatók:
    Q2 Physics and Astronomy (miscellaneous)
  8. Nagy, Á., Romera, E.: Maximum Rényi entropy principle and the generalized Thomas-Fermi model.
    Phys. Lett. A. 373 844-846, 2009.
    Folyóirat-mutatók:
    Q2 Physics and Astronomy (miscellaneous)
  9. Nagy, Á., Romera, E.: Relative Rényi entropy for atoms.
    Int. J. Quant. Chem. 109 (11), 2490-2494, 2009.
    Folyóirat-mutatók:
    Q2 Atomic and Molecular Physics, and Optics
    Q2 Condensed Matter Physics
    Q2 Physical and Theoretical Chemistry
  10. Nagy, Á., Levy, M., Ayers, P., Chattaraj, P.: Time-independent theories for a single excited state.
    In: Chemical Reactivity Theory / edited by Partim Kumar Chattaraj, Taylor and Francis, London, 121-136, 2009.
2008
  1. Nagy, Á.: Alternative descriptors of Coulomb systems and their relationship to the kinetic energy.
    Chem. Phys. Lett. 460 343-346, 2008.
    Folyóirat-mutatók:
    Q1 Physical and Theoretical Chemistry
    Q1 Physics and Astronomy (miscellaneous)
  2. March, N., Nagy, Á., Amovilli, C.: Asymptotic form at large r of a third-order linear homogeneous differential equation for the ground-state electron density of the He atom.
    Phys. Rev. A. 77 (3), 034501, 2008.
    Folyóirat-mutatók:
    D1 Atomic and Molecular Physics, and Optics
  3. March, N., Nagy, Á.: Differential virial theorem in density-functional theory in terms of the Pauli potential for spherically symmetric electron densities: illustrative example for the family of Be-like atomic ions.
    Phys. Rev. A. 78 (4), 044501, 2008.
    Folyóirat-mutatók:
    D1 Atomic and Molecular Physics, and Optics
  4. Nagy, Á., Amovilli, C.: Electron-electron Cusp Condition and Asymptotic Behaviour for the Pauli Potential in Pair Density Functional Theory.
    J. Chem. Phys. 128 114115 (4, 2008.
    Folyóirat-mutatók:
    D1 Medicine (miscellaneous)
    D1 Physical and Theoretical Chemistry
    D1 Physics and Astronomy (miscellaneous)
  5. Howard, I., March, N., Nagy, Á.: Exact asymptotic solution of the Della Sala-Görling integral equation for the exchange-only potential for Be-like atomic ions at large Z.
    Phys. Lett. A. 372 3256-3258, 2008.
    Folyóirat-mutatók:
    Q1 Physics and Astronomy (miscellaneous)
  6. Amovilli, C., March, N., Howard, I., Nagy, Á.: Exact Hamiltonian for an analytic correlated ground-state wave function for He-like ions.
    Phys. Lett. A. 372 4053-4056, 2008.
    Folyóirat-mutatók:
    Q1 Physics and Astronomy (miscellaneous)
  7. March, N., Nagy, Á.: Exact integral constraint requiring only the ground-state electron density as input on the exchange-correlation force partial differentialVxc(r)/partial differential r for spherical atoms.
    J. Chem. Phys. 129 (19), 194114, 2008.
    Folyóirat-mutatók:
    D1 Medicine (miscellaneous)
    D1 Physical and Theoretical Chemistry
    D1 Physics and Astronomy (miscellaneous)
  8. Romera, E., Nagy, Á.: Fisher-Renyi entropy product and information plane.
    Phys. Lett. A. 372 6823-6825, 2008.
    Folyóirat-mutatók:
    Q1 Physics and Astronomy (miscellaneous)
  9. Nagy, Á., Liu, S., Nagy, Á.: Local wave-vector, Shannon and Fisher Information.
    Phys. Lett. A. 372 1654-1656, 2008.
    Folyóirat-mutatók:
    Q1 Physics and Astronomy (miscellaneous)
  10. Amovilli, C., Nagy, Á.: Modelling the Pauli Potential in the Pair Density Functional Theory.
    J. Chem. Phys. 129 204108 (9, 2008.
    Folyóirat-mutatók:
    D1 Medicine (miscellaneous)
    D1 Physical and Theoretical Chemistry
    D1 Physics and Astronomy (miscellaneous)
  11. Romera, E., Nagy, Á.: Rényi information of atoms.
    Phys. Lett. A. 372 4918-4922, 2008.
    Folyóirat-mutatók:
    Q1 Physics and Astronomy (miscellaneous)
  12. Szabó, J., Sen, K., Nagy, Á.: The Fisher-Shannon information plane for atoms.
    Phys. Lett. A. 372 2428-2430, 2008.
    Folyóirat-mutatók:
    Q1 Physics and Astronomy (miscellaneous)
2007
  1. Ayers, P., Nagy, Á.: Alternatives to the electron density for describing Coulomb systems.
    J. Chem. Phys. 126 144108, 2007.
    Folyóirat-mutatók:
    D1 Medicine (miscellaneous)
    D1 Physical and Theoretical Chemistry
    D1 Physics and Astronomy (miscellaneous)
  2. Morrison, R., Ayers, P., Nagy, Á.: Density scaling and relaxation of the Pauli principle.
    J. Chem. Phys. 126 124111, 2007.
    Folyóirat-mutatók:
    D1 Medicine (miscellaneous)
    D1 Physical and Theoretical Chemistry
    D1 Physics and Astronomy (miscellaneous)
  3. Nagy, Á.: Fisher information and steric effect.
    Chem. Phys. Lett. 449 212-215, 2007.
    Folyóirat-mutatók:
    Q1 Physical and Theoretical Chemistry
    Q1 Physics and Astronomy (miscellaneous)
  4. Hornyák, I., Nagy, Á.: Phase-space Fisher information.
    Chem. Phys. Lett. 437 132-137, 2007.
    Folyóirat-mutatók:
    Q1 Physical and Theoretical Chemistry
    Q1 Physics and Astronomy (miscellaneous)
2006
  1. Nagy, Á., Sen, K.: Atomic Fisher information versus atomic number.
    Phys. Lett. A. 360 (2), 291-293, 2006.
    Folyóirat-mutatók:
    Q2 Physics and Astronomy (miscellaneous)
  2. Howard, I., Bartha, F., March, N., Nagy, Á.: Electron densities of the He-like sequence of atomic ions, and associated physical properties.
    Phys. Lett. A. 350 (3-4), 236-240, 2006.
    Folyóirat-mutatók:
    Q2 Physics and Astronomy (miscellaneous)
  3. Nagy, Á., Jánosfalvi, Z.: Exact energy expression in the strong-interaction limit of the density functional theory.
    Philos. Mag. 86 (13-14), 2101-2114, 2006.
    Folyóirat-mutatók:
    Q1 Condensed Matter Physics
  4. Nagy, Á.: Fisher information in a two-electron entangled artificial atom.
    Chem. Phys. Lett. 425 (1-3), 154-156, 2006.
    Folyóirat-mutatók:
    Q1 Physical and Theoretical Chemistry
    Q1 Physics and Astronomy (miscellaneous)
  5. March, N., Nagy, Á.: Formally exact integral equation theory of the exchange-only potential in density functional theory: Refined closure approximation.
    Phys. Lett. A. 348 (3-6), 374-378, 2006.
    Folyóirat-mutatók:
    Q2 Physics and Astronomy (miscellaneous)
  6. Nagy, Á.: Hierarchy of equations in the generalized density functional theory.
    Int. J. Quantum Chem. 106 (5), 1043-1051, 2006.
    Folyóirat-mutatók:
    Q2 Atomic and Molecular Physics, and Optics
    Q2 Condensed Matter Physics
    Q2 Physical and Theoretical Chemistry
  7. March, N., Jánosfalvi, Z., Nagy, Á., Suhai, S.: Kinetic and exchange energy related non-locally in Hartree-Fock theory of an inhomogeneous electron liquid.
    Physics and Chemistry of Liquids 44 (5), 493-499, 2006.
    Folyóirat-mutatók:
    Q3 Condensed Matter Physics
    Q3 Electronic, Optical and Magnetic Materials
    Q2 Materials Chemistry
    Q3 Physical and Theoretical Chemistry
  8. Nagy, Á.: Spherically and system-averaged pair density functional theory.
    J. Chem. Phys. 125 (18), 1-6, 2006.
    Folyóirat-mutatók:
    D1 Medicine (miscellaneous)
    D1 Physical and Theoretical Chemistry
    D1 Physics and Astronomy (miscellaneous)
  9. Nagy, Á., Sas, G., Boda, Z.: Veleszületett és szerzett thrombophiliák.
    In: Thrombosis és vérzékenység. Szerk.: Boda Zoltán, Medicina, Budapest, 87-101, 2006. ISBN: 9632260414
2005
  1. Nagy, Á., Howard, I., March, N., Jánosfalvi, Z.: Subspace density of the first excited state for two harmonically interacting electrons with isotropic harmonic confinement.
    Phys. Lett. A. 335 (5-6), 347-350, 2005.
    Folyóirat-mutatók:
    Q2 Physics and Astronomy (miscellaneous)
2002
  1. Nagy, Á.: Density-matrix functional theory.
    Phys. Rev. A. 66 (2), 1-5, 2002.
    Folyóirat-mutatók:
    D1 Atomic and Molecular Physics, and Optics
  2. Gál, T., March, N., Nagy, Á.: Differential equation for the determination of a first-degree homogeneous noninteracting kinetic-energy density functional for two-level systems.
    Phys. Lett. A. 302 (2-3), 55-58, 2002.
    Folyóirat-mutatók:
    Q1 Physics and Astronomy (miscellaneous)
  3. Ayers, P., Parr, R., Nagy, Á.: Local kinetic energy and local temperature in the density-functional theory of electronic structure.
    Int. J. Quantum Chem. 90 (1), 309-326, 2002.
    Folyóirat-mutatók:
    Q2 Atomic and Molecular Physics, and Optics
    Q2 Condensed Matter Physics
    Q2 Physical and Theoretical Chemistry
  4. Tasnádi, F., Nagy, Á.: Local self-interaction-free approximate exchange-correlation potentials in the variational density functional theory for individual excited states.
    Chem. Phys. Lett. 366 (5-6), 496-503, 2002.
    Folyóirat-mutatók:
    Q1 Physical and Theoretical Chemistry
    Q1 Physics and Astronomy (miscellaneous)
  5. Howard, I., March, N., Nagy, Á., Doren, V.: Ten-Electron Central Field Problem: An Inhomogeneous Electron Liquid.
    Phys. Chem. Liq. 40 (1), 47-56, 2002.
    Folyóirat-mutatók:
    Q3 Condensed Matter Physics
    Q3 Electronic, Optical and Magnetic Materials
    Q3 Materials Chemistry
    Q3 Physical and Theoretical Chemistry
2000
  1. Gál, T., Nagy, Á.: A method to get an analytical expression for the non-interacting kinetic energy density functional.
    Theochem-J. Mol. Struct. 501-502 167-171, 2000.
  2. Bene, E., Nagy, Á.: Determination of the total electron density from its l-shell contribution.
    Theochem-J. Mol. Struct. 501-502 107-113, 2000.
  3. Nagy, Á., Sen, K.: Exact results on the curvature of the electron density at the cusp in certain highly excited states of atoms.
    Chem. Phys. Lett. 332 (1-2), 154-158, 2000.
    Folyóirat-mutatók:
    Q1 Physical and Theoretical Chemistry
    Q1 Physics and Astronomy (miscellaneous)
  4. Nagy, Á., Sen, K.: Higher-order cusp of the density in certain highly excited states of atoms and molecules.
    J. Phys. B-At. Mol. Opt. Phys. 33 (9), 1745-1751, 2000.
    Folyóirat-mutatók:
    Q1 Atomic and Molecular Physics, and Optics
    Q1 Condensed Matter Physics
  5. Nagy, Á., March, N.: Homogeneity Properties of Kinetic Energy in Density Functional Theory of an Inhomogeneous Electron Liquid.
    Phys. Chem. Liq. 38 (3), 345-352, 2000.
    Folyóirat-mutatók:
    Q3 Condensed Matter Physics
    Q3 Electronic, Optical and Magnetic Materials
    Q3 Materials Chemistry
    Q3 Physical and Theoretical Chemistry
  6. Nagy, Á., March, N.: Homogeneity properties of Pauli energy in density functional theory of an electron liquid.
    Phys. Chem. Liq. 38 (6), 759-763, 2000.
  7. Nagy, Á., Parr, R.: Remarks on density functional theory as a thermodynamics.
    Theochem-J. Mol. Struct. 501-502 101-106, 2000.
  8. Bene, E., Nagy, Á.: The correlation energy in terms of density moments along the adiabatic connection in the density functional theory.
    Chem. Phys. Lett. 324 (5-6), 475-481, 2000.
    Folyóirat-mutatók:
    Q1 Physical and Theoretical Chemistry
    Q1 Physics and Astronomy (miscellaneous)
  9. Nagy, Á., Adachi, H.: Total energy versus one-electron energy differences in the excited-state density functional theory.
    J. Phys. B-At. Mol. Opt. Phys. 33 (16), L585-L589, 2000.
1999
  1. Nagy, Á., Liu, S., Parr, R.: Density-functional formulas for atomic electronic energy components in terms of moments of the electron density.
    Phys. Rev. A. 59 (5), 3349-3354, 1999.
    Folyóirat-mutatók:
    D1 Atomic and Molecular Physics, and Optics
  2. Nagy, Á., Gonis, A., Kioussis, N., Ciftan, M.: Density functional theory for a single excited state.
    In: Electron correlations and materials properties, Kluwer, New York, 451, 1999.
  3. Gál, T., March, N., Nagy, Á.: Differential equation for ground-state electron density of He-like ions for large atomic number.
    Chem. Phys. Lett. 305 429, 1999.
    Folyóirat-mutatók:
    Q1 Physical and Theoretical Chemistry
    Q1 Physics and Astronomy (miscellaneous)
  4. Nagy, Á., March, N.: Exchange-only theory: Relation between exchange energy, its functional derivative and eigenvalue sums an inhomogeneous electron liquid.
    Phys. Chem. Liq. 37 671-676, 1999.
    Folyóirat-mutatók:
    Q3 Condensed Matter Physics
    Q3 Electronic, Optical and Magnetic Materials
    Q3 Materials Chemistry
    Q3 Physical and Theoretical Chemistry
  5. Levy, M., Nagy, Á.: Excited state Koopmans theorem for ensembles.
    Phys. Rev. A. 59 (2), 1687-1689, 1999.
    Folyóirat-mutatók:
    D1 Atomic and Molecular Physics, and Optics
  6. Liu, S., Nagy, Á., Parr, R.: Expansion of the density functional energy components Ec nd Tc in terms of moments of the electron density.
    Phys. Rev. A. 59 (2), 1131-1134, 1999.
    Folyóirat-mutatók:
    D1 Atomic and Molecular Physics, and Optics
  7. Gál, T., Nagy, Á., March, N.: Generalized local density approximation in an inhomogeneous electron liquid.
    Phys. Chem. Liq. 37 (6), 641-648, 1999.
    Folyóirat-mutatók:
    Q3 Condensed Matter Physics
    Q3 Electronic, Optical and Magnetic Materials
    Q3 Materials Chemistry
    Q3 Physical and Theoretical Chemistry
  8. Nagy, Á.: Kohn-Sham potentials for atomic multiplets.
    J. Phys. B. 32 (12), 2841-2851, 1999.
    Folyóirat-mutatók:
    D1 Atomic and Molecular Physics, and Optics
    D1 Condensed Matter Physics
  9. Levy, M., Nagy, Á.: Variational density functional theory for an individual excited state.
    Phys. Rev. Lett. 83 (21), 4361-4364, 1999.
    Folyóirat-mutatók:
    D1 Physics and Astronomy (miscellaneous)
1998
  1. Nagy, Á.: Density functional theory and applications.
    Phys. Rep. 298 (1), 1-79, 1998.
  2. March, N., Gál, T., Nagy, Á.: Differential equation for ground-state electron density in Hookean atom with two electrons repelling coulombically.
    Chem. Phys. Lett. 292 (4-6), 384-386, 1998.
  3. Andrejkovics, I., Nagy, Á.: Excitation energies in density functional theory: comparison of several methods for the H2O, N2, CO and C2H4 molecules.
    Chem. Phys. Lett. 296 (5-6), 489-493, 1998.
  4. Nagy, Á.: Excited states in density functional theory.
    Int. J Quant. Chem. 70 (4-5), 681-691, 1998.
  5. Nagy, Á.: Kohn-Sham equations for multiplets.
    Phys. Rev. A. 57 (3), 1672-1677, 1998.
  6. Nagy, Á.: Optimized potential method for ensembles of excited states.
    Int. J Quant. Chem. 69 (2), 247-254, 1998.
  7. March, N., Holas, A., Nagy, Á.: Self-consistent Thomas-Fermi-Dirac theory, extended by Gell-Mann and Bruckner correlation, in terms of density n and its two reduced gradients sqrt(nabla) n/n and nabla n/n.
    Int. J Quant. Chem. 69 (2), 145-149, 1998.
  8. Nagy, Á., Levy, M.: Test for new ionization formula in density functional theory.
    Chem. Phys. Lett. 296 (3-4), 313-315, 1998.
  9. Nagy, Á., Bene, E.: Total electron density from the s-electron density.
    Phys. Rev. A. 57 (5), 3458-3461, 1998.
1997
  1. Nagy, Á.: An alternative derivation of the Krieger-Li-Iafrate approximation to the Optimized-Effective-Potential Method.
    Phys. Rev. A. 55 (5), 3465-3468, 1997.
  2. Nagy, Á., March, N.: Differentional and local virial theorem.
    Mol. Phys. 91 (4), 597-604, 1997.
  3. Gál, T., Nagy, Á.: Local temperature in molecules.
    Mol. Phys. 91 (5), 873-880, 1997.
  4. Nagy, Á., March, N.: Ratio of density gradient to electron density as a local wavenumber to characterize the ground state of spherical atoms.
    Mol. Phys. 90 (2), 271-280, 1997.
1996
  1. Liu, S., Süle, P., López-Boada, R., Nagy, Á.: Applications to atoms, ions, and molecules of a novel form of the correlation energy density functional.
    Chem. Phys. Lett. 257 (1-2), 68-74, 1996.
  2. Süle, P., Nagy, Á.: Density functional study of strong hydrogen-bonded systems: the hydrogen diformiate complex.
    J. Chem. Phys. 104 (21), 8524-8534, 1996.
  3. Nagy, Á.: Exact relations for the electron density and the energy functionals.
    In: Recent advances in the density functional methods, World Scientific, Singapore, , 1996.
  4. Nagy, Á., Parr, R.: Information entropy as a measure of the quality of an approximate electronic wave function.
    Int. J. Quant. Chem. 58 (4), 323-327, 1996.
  5. Nagy, Á., March, N.: Kinetic-energy of an inhomogeneous electron liquid - form for atom with on p plus s shell.
    Phys. Chem. Liq. 32 (4), 219-223, 1996.
  6. Nagy, Á.: Local ensemble exchange potential.
    J. Phys. B. 29 (3), 389-394, 1996.
  7. Nagy, Á., Parr, R., Liu, S.: Local temperature in an electronic system.
    Phys. Rev. A. 53 (5), 3117-3121, 1996.
  8. Nagy, Á., Andrejkovics, I.: Pseudopotentials from electron density.
    Phys. Rev. A. 53 (5), 3656-3659, 1996.
  9. Nagy, Á.: Transition functional methods in the density functional theory.
    Phys. Rev. A. 53 (5), 3660-3663, 1996.
1995
  1. Nagy, Á.: Coordinate scaling and adiabatic connection formula for ensembles of fractionally occupied excited states.
    Int. J. Quant. Chem. 56 (4), 225-228, 1995.
  2. Liu, S., Parr, R., Nagy, Á.: Cusp relations for local strongly decaying properties in electronic systems.
    Phys. Rev. A. 52 2645-2651, 1995.
  3. Nagy, Á.: Exact ensemble exchange potentials for multiplets.
    Int. J Quant. Chem. 29 297-301, 1995.
  4. Nagy, Á.: Hierarchies of equations for the Legendre transforms of the energy functionals.
    Phys. Rev. A. 52 (2), 984-991, 1995.
  5. Parr, R., Liu, S., Kugler, A., Nagy, Á.: Some identities in density functional theory.
    Phys. Rev. A. 52 (2), 969-976, 1995.
1994
  1. Süle, P., Nagy, Á.: Comparative test of local and nonlocal Wigner-like correlation energy functionals.
    Acta Phys. Chim. Debr. 29 31-42, 1994.
  2. Nagy, Á., Parr, R.: Density functional theory as thermodynamics.
    Proc. Indian Acad. Sci., Chem. sci. 106 (2), 217-227, 1994.
  3. Nagy, Á.: Exact and approximate exchange potentials in the density functional theory.
    J. Phys. B At. Mol. Opt. Phys. 69 (5), 779-785, 1994.
  4. Nagy, Á., Andrejkovics, I.: Excitation energies in the local density functional theory.
    J. Phys. B. 27 (2), 233-240, 1994.
  5. Andrejkovics, I., Nagy, Á.: Excitation energies in the local spin density functional theory.
    Acta Phys. Chim. Debr. 29 7-16, 1994.
  6. Nagy, Á.: Integral and regional virial theorems in the density functional theory /Á. Nagy.
    Proc. Indian Acad. Sci., Chem. sci. 106 (2), 251-258, 1994.
  7. Nagy, Á.: Relativistic density functional theory for ensembles of excited states.
    Phys. Rev. A. 49 (4), 3074-3076, 1994.
  8. Laming, G., Nagy, Á., Handy, N., March, N.: Scaling properties of inhomogeneity kinetic energy in some diatomic molecules, in relation to dissociation energies.
    Mol. Phys. 81 (6), 1497-1500, 1994.
  9. Nagy, Á.: Spin virial theorem in the density functional theory.
    Int. J Quant. Chem. 49 (4), 353-361, 1994.
1993
  1. Vibók, Á., Nagy, Á.: BSSE-free SCF method with local density functional correlation correction.Application to (H2)2 dimer.
    Acta Phys. Chim. Debr. 1993.
  2. Nagy, Á.: Exchange energy in the exact exchange-only density functional theory.
    J. Phys. B. 26 (1), 43-48, 1993.
  3. Nagy, Á., Andrejkovics, I.: Excitation energies with local density functional theory.
    J. Phys. B. 27 (2), 233-240, 1993.
  4. Nagy, Á.: Hierarchy of equations for the energy functional of the density-functional theory.
    Phys. Rev. A. 47 (4), 2715-2719, 1993.
1992
  1. Nagy, Á.: Approximate and exact exchange potentials in the density functional theory.
    In: Conference on Density Functional Theory and its Applications, 16-18 September, Oxford
  2. Nagy, Á., March, N.: One-sixth power law for molecular dissociation energies in terms of inhomogeneity kinetic energy.
    J. Mol. Struct. /Theorem/ 1992.
  3. Nagy, Á.: Regional virial theorem in density functional theory.
    Phys. Rev 1992.
  4. Nagy, Á., March, N.: Relation between the Pauli potential and the Pauli energy density.
    Phys. Chem. Liq 1992.
  5. March, N., Nagy, Á.: Theory of inhomogeneous electron liquid, transcending hartree-fock.
    Phys. Chem. Liq 1992.
1991
  1. Nagy, Á.: Ab initio exchange-correlation potentials in the local density approximation.
    Acta Phys. Chim. Debr. XXVII 31, 1991.
  2. Nagy, Á.: Analysis of the Pauli potential of atoms and ions.
    Acta Phys. Hung. 70 (4), 321-331, 1991.
  3. Nagy, Á.: A thermodynamical transcription of the density functional theory.
    In: 1st EPS Southern European School of Physics on 'Dynamical Processes in Molecular Physics', Avila (Spain), 1-13 September, 1991
  4. Nagy, Á.: Exact potential-phase relation for the ground state of the first-row atoms and ions.
    In: Research Workshop in Condensed Matter, Atomic and Molecular Physics, Trieste, 8 August, 1991
  5. Nagy, Á.: Excitation energies calculated with parameter-free exchange potential in the density functional theory.
    J. Phys. B. 24 (22), 4691, 1991.
  6. Nagy, Á., March, N.: Kinetic energy in terms of electron density for atomic s and p shells in a bare Coulumb field.
    Chem. Phys. Lett 1991.
  7. Nagy, Á.: Local virial theorem in density functional theory.
    In: VIIth International Congress on Quantum Chemistry, Menton (France) 2-5 July, 1991
  8. Nagy, Á.: Parameter-free exchange-correlation potential in density functional theory for excited states.
    In: VIIth International Congress on Quantum Chemistry, Menton (France), 2-5 July, 1991
  9. Nagy, Á.: Parameter-free exchange potential for ground and excited states in the density functional theory.
    In: Research Workshop in Condensed MMatter, Atomic and Molecular Physics, Trieste, 15 August,1991
  10. Nagy, Á., March, N.: Relation between total energy and sun of orbital energies for neutral atoms.
    Chem. Phys 1991.
  11. Nagy, Á., March, N.: The exact form of the Pauli potential for the ground state of two- and three-level atoms and ions.
    Int. J. Quantum Chem 1991.
1990
  1. Nagy, Á., March, N.: Asymptotic Behaviour of the Pauli Potential for a Perfectly Screened Charge embedded in an Almost Degenerate Dense Plasma.
    Phys. Chem. Liq. 22 (1-2), 129-131, 1990.
  2. Nagy, Á., March, N.: Effective potentials for light atoms and ions at zero and finite temperatures.
    Phys. Lett. A. 144 (4-5), 241-243, 1990.
  3. Nagy, Á., March, N.: Ground-state energy and one-body virial in density functional theory of atomic ions.
    Chem. Phys. 140 (3), 339-341, 1990.
  4. Nagy, Á.: Interpretation of the exchange-correlation potential of the density-functional theory.
    Phys. Rev. Lett. 65 (20), 2608-2608, 1990.
  5. Nagy, Á., Parr, R.: Local virial theorem in density-functional theory.
    Phys. Rev. A. 42 (1), 201-203, 1990.
  6. Nagy, Á.: Parameter-free exchange potential for excitation in the density-functional theory: Application to excitation energies within the fractional-occupation approach.
    Phys. Rev. A. 42 (7), 4388-4390, 1990.
1989
  1. Nagy, Á.: Analysis of the r-Dependence of Ab Initio Parameters αi of the Xα Method for Different Molecular Orbitals in the Molecule H2O.
    Croat. Chem. Acta. 62 (4), 587-594, 1989.
  2. Nagy, Á.: An investigation on spin orbitals of several singly ionized positive ions by the XÓ SCF method.
    Acta Phys. Chim. Debr. 26. 33-43, 1989.
  3. Nagy, Á.: Density functional calculation of excitation energies using a parameter free exchange-correlation potential.
    In:
  4. Gáspár, R., Nagy, Á.: Electronegativities and hardnesses of several atoms and ions calculated with the Xα method having self-consistent parameter α.
    Acta Phys. Hung. 65 (2-3), 159-163, 1989.
  5. Nagy, Á., March, N.: Exact potential-phase relation for the ground state of the C atom.
    Phys. Rev. A. 40 (2), 554-557, 1989.
  6. March, N., Nagy, Á.: One-body potential in terms of phase of wave functions for ground-state of the Be atom..
    Phys. Rev 1989.
  7. Nagy, Á., March, N.: One-body potential theory in terms of the phase of wave functions for the ground state of the Be atom.
    Phys. Rev. A. 39 (11), 5512-5514, 1989.
  8. Nagy, Á., Gáspár, R.: Self-interaction correction in the local density functional and the XÓ methods.
    Acta Phys. Chim. Debr 1989.
  9. Nagy, Á.: The ab initio determination of the local temperature in the local density functional theory.
    In:
  10. Nagy, Á., Gáspár, R.: The chemical bond and model exchange-correlation potentials.
    In: Molecules in Physics, Chemistry and Biology
  11. Nagy, Á.: The hyperfine interaction parameter [ró](O) calculated by the Xα method with ab initio self-consistent exchange parameter.
    Acta Phys. Hung. 65 (1), 55-58, 1989.
1988
  1. Gáspár, R., Nagy, Á.: The first ionization energy, electron affinity and electronegativity calculated by the Xα method with ab initio self-consistent exchange parameter.
    Acta Phys. Hung. 64 (4), 405-416, 1988.
1987
  1. Gáspár, R., Nagy, Á.: Spin orbitals and total energy calculated by the Xα method including ab initio self-consistent exchange parameters αSCF.
    Acta Phys. Hung. 62 (2-4), 131-137, 1987.
1986
  1. Nagy, Á., Gáspár, R., Nagy, Á.: Analysis of the r dependence of self-consistent exchange parameters[alfa]1 different shells in neon, argon and krypton.
    Phys. Rev. B. 34 (12), 8903-8905, 1986.
  2. Gáspár, R., Nagy, Á.: Xα method with theoretically determined perameter α: calculation of shake-up and multi-electron x-ray transition energies.
    J. Phys. B. 19 (18), 2793-2797, 1986.
1985
  1. Nagy, Á.: Calculation of atomic properties in the X[alfa] method with ab initio exchange parameter: ab initio exchange parameter [alfa] in the X[alfa] method.
    In: Second European Conference on Atomic and Molecular Physics, April 15-19, 1985, Free University, Amsterdam, the Netherlands : book of abstracts / editors, A.E. de Vries, M.J. van der Wiel, European Physical Society, Geneva, 371, 1985.
  2. Gáspár, R., Nagy, Á.: The X-[alfa] method with ab initio exchange parameters, diamagnetic susceptibility and nuclear magnetic shielding constants for several atoms.
    Acta Phys. Hung. 58 (1-2), 107-111, 1985.
1984
  1. Gáspár, R., Nagy, Á.: Pseudopotential and valence exchange in the multiple scattering method.
    Acta Phys. Hung. 55 (1-4), 45-49, 1984.
feltöltött közlemény: 231 Open Access: 69
https://tudoster.idea.unideb.hu
A szolgáltatást nyújtja: DEENK