Tudóstér: Figula Ágota publikációi

PDF
-
szűkítés
feltöltött közlemény: 69 Open Access: 21
2024
  1. Al-Janabi, S., Figula, Á.: Geodesic vectors and flat totally geodesic subalgebras of six-dimensional filiform metric Lie algebras.
    J. Geom. 115 (1), 1-39, 2024.
    Folyóirat-mutatók:
    Q3 Geometry and Topology (2023)
  2. Figula, Á., Nagy, P.: Malcev-like binary Lie algebras of dimension 5.
    Commun. Algebr. [Epub ahead of print] (-), 1-27, 2024.
    Folyóirat-mutatók:
    Q2 Algebra and Number Theory (2023)
2023
  1. Figula, Á.: Anti-Commutative Algebras and Their Groups of Automorphisms.
    In: Book of Abstracts, XIII International Conference of the Georgian Mathematical Union. Szerk.: Guram Gogishvili, Maia Japoshvili, Georgian Mathematical Union; Batumi Shota Rustaveli State University, Batumi, 109, 2023.
  2. Ficzere, K., Figula, Á.: Classification of 5-dimensional anti-commutative lie algebras.
    In: Book of Abstracts, RIGA 2023 /ed. Ion Mihai, Adela Mihai, Bucharest University Press, Bucharest, 16, 2023.
  3. Figula, Á., Nagy, P.: Classification of a family of 4-dimensional anti-commutative algebras and their automorphisms.
    Linear Alg. Appl. 656 385-408, 2023.
    Folyóirat-mutatók:
    Q1 Algebra and Number Theory
    Q1 Discrete Mathematics and Combinatorics
    Q2 Geometry and Topology
    Q2 Numerical Analysis
  4. Figula, Á., Silling, S.: Egy geometriai kapcsolat a Fibonacci-sorozat és a Lucas-számok sorozata között.
    Érintő. 30 (4), 1-9, 2023.
  5. Figula, Á., Nagy, P.: Extensions and tangent prolongations of differentiable loops.
    J. Algebra. 619 99-129, 2023.
    Folyóirat-mutatók:
    Q1 Algebra and Number Theory
  6. Figula, Á.: Extensions and tangent prolongations of differentiable loops.
    In: Book of Abstracts, RIGA 2023 /ed. Ion Mihai, Adela Mihai, Bucharest University Press, Bucharest, 17, 2023.
  7. Al-Abayechi, A., Figula, Á.: Geodesic Vectors and Flat Totally Geodesic Subalgebras in Nilpotent Metric Lie Algebras.
    J. Math. Sci. 275 (6), 660-673, 2023.
  8. Figula, Á., Al-Janabi, S.: Isometry groups of six-dimensional filiform nilmanifolds.
    Int. J. Group Theory. 12 (2), 67-80, 2023.
    Folyóirat-mutatók:
    Q3 Algebra and Number Theory
  9. Ficzere, K., Figula, Á.: Isometry groups of six-dimensional nilmanifolds.
    Aequ. Math. 97 (4), 725-752, 2023.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q2 Discrete Mathematics and Combinatorics
    Q2 Mathematics (miscellaneous)
  10. Figula, Á., Juhász, T.: On the derived length of the unit group of group algebras of groups with cyclic commutator subgroup.
    COMMUN ALGEBRA. 51 (2), 633-647, 2023.
    Folyóirat-mutatók:
    Q2 Algebra and Number Theory
  11. Al-Janabi, S., Figula, Á.: Totally geodesic subalgebras of 6-dimensional nilmanifolds having nilpotency classes 3 and 4.
    In: Book of Abstracts, RIGA 2023 /ed. Ion Mihai, Adela Mihai, Bucharest University Press, Bucharest, 2, 2023.
2022
  1. Figula, Á., Kása, E.: A trigonometria tanítása a realisztikus matematikai módszerrel online környezetben.
    In: Hatékony Tanulás. Szerk.: Di Blasio Barbara, Demeter Gáborné, Magyar Tudományos Akadémia Pécsi Területi Bizottsága III. Matematikai és Informatikai Tudományok Szakbizottság, Szakmódszertan és Hatékony Tanulás Munkabizottság, Pécs, 82-104, 2022. ISBN: 9789636260804
  2. Ficzere, K., Figula, Á.: Isometry groups of six-dimensional nilmanifolds.
  3. Ficzere, K., Figula, Á., Hannusch, C., Kása, E.: Lehre der Trigonometrie anhand realistischer Aufgaben im Online-Unterricht.
    Teach. math. comput. sci. 20 (1), 87-105, 2022.
  4. Falcone, G., Figula, Á., Hannusch, C.: On the generating matrices of Goppa codes over hyperelliptic curves.
    JRMS. 37 (3), 273-279, 2022.
    Folyóirat-mutatók:
    Q4 Mathematics (miscellaneous)
  5. Al-Abayechi, A., Figula, Á.: Topological Loops with Decomposable Solvable Multiplication Groups.
    Results Math. 77 (1), 1-34, 2022.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q2 Mathematics (miscellaneous)
2021
  1. Figula, Á., Lomjaria, G., Ficzere, K.: Differential Equations and Their Lie Symmetry Groups.
    In: Riemann Geometry and Applications / Adela Mihai, Ion Mihai, Bucharest University Press, Bucharest, 99-138, 2021. ISBN: 9786061613250
  2. Falcone, G., Figula, Á., Hannusch, C.: Explicit Bases of the Riemann-Roch Spaces on Divisors on Hyperelliptic Curves.
  3. Figula, Á.: Gördülő akrobatikus eszközök.
    Érintő. 21 1-18, 2021.
  4. Figula, Á.: Nilmanifolds and totally geodesic subalgebras of metric nilpotent Lie algebras.
    In: RIGA 2021 - BOOK OF ABSTRACTS / Adela Mihai, Bucharest University Press, Bucharest, 7, 2021.
  5. Al-Abayechi, A., Figula, Á.: On the structure of topological loops with solvable multiplication groups.
    In: RIGA 2021 - BOOK OF ABSTRACTS. Ed.: Adela Mihai, Bucharest University Press, Bucharest, 7-8, 2021.
  6. Figula, Á., Al-Abayechi, A.: Topological loops having solvable indecomposable Lie groups as their multiplication groups.
    Transform. Groups. 26 (1), 279-303, 2021.
    Folyóirat-mutatók:
    Q2 Algebra and Number Theory
    Q2 Geometry and Topology
2020
  1. Al-Abayechi, A., Figula, Á.: Geodesic vectors and flat totally geodesic subalgebras in nilpotent metric Lie algebras.
    Itogi Nauki i Techniki. Ser. Sovrem. Mat. Pril. Temat. Obz. 177 10-23, 2020.
  2. Figula, Á., Nagy, P.: Inverse property of nonassociative abelian extensions.
    Comment. math. Univ. Carolinae. 61 (4), 501-511, 2020.
    Folyóirat-mutatók:
    Q4 Mathematics (miscellaneous)
  3. Figula, Á.: Klein-gyöngyök.
    Érintő. 18 1-8, 2020.
  4. Belova, O., Falcone, G., Figula, Á., Mikes, J., Nagy, P., Wefelscheid, H.: Our Friend and Mathematician Karl Strambach.
    Results Math. 75 (2), 69, 2020.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q2 Mathematics (miscellaneous)
  5. Falcone, G., Figula, Á., Hannusch, C.: Steiner Loops of Affine Type.
    Results Math. 75 (4), 1-25, 2020.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q2 Mathematics (miscellaneous)
  6. Figula, Á., Nagy, P.: Tangent prolongation of C^r-differentiable loops.
    Publ. Math. Debr. 97 (1-2), 241-252, 2020.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  7. Figula, Á., Horváth, G., Milkovszki, T., Muzsnay, Z.: The Lie symmetry group of the general Liénard-type equation.
    J. Nonlinear Math. Phys. 27 (2), 185-198, 2020.
    Folyóirat-mutatók:
    Q2 Mathematical Physics
    Q3 Statistical and Nonlinear Physics
  8. Figula, Á., Al-Abayechi, A.: Topological loops with solvable multiplication groups of dimension at most six are centrally nilpotent.
    Int. J. Group Theory. 9 (2), 81-94, 2020.
    Folyóirat-mutatók:
    Q3 Algebra and Number Theory
2019
  1. Figula, Á.: Hermitikus mátrixok összegeinek sajátértékei és a méhkaptár-modell.
    Érintő. 11 1-21, 2019.
  2. Figula, Á., Ficzere, K., Al-Abayechi, A.: Topological loops with six-dimensional solvable multiplication groups having five-dimensional nilradical.
    Ann. Math. Inform. 50 71-87, 2019.
    Folyóirat-mutatók:
    Q4 Computer Science (miscellaneous)
    Q4 Mathematics (miscellaneous)
2018
  1. Figula, Á., Nagy, P.: Isometry classes of simply connected nilmanifolds.
    J. Geom. Phys. 132 370-381, 2018.
    Folyóirat-mutatók:
    Q3 Geometry and Topology
    Q3 Mathematical Physics
    Q2 Physics and Astronomy (miscellaneous)
2017
  1. Figula, Á., Strambach, K.: Loops as sections in compact Lie groups.
    Abh. Math. Semin. Univ. Hamburg. 87 (1), 61-68, 2017.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  2. Falcone, G., Figula, Á., Strambach, K.: Multiplicative Loops of Quasifields Having Complex Numbers as Kernel.
    Results Math. 72 (4), 2129-2156, 2017.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q2 Mathematics (miscellaneous)
  3. Figula, Á.: Multiplicative loops of topological quasifields.
    Banach Center Publ. 113 123-134, 2017.
  4. Figula, Á., Menteshashvili, M.: On the geometry of the domain of the solution of nonlinear Cauchy problem.
    In: Lie groups, differential equations, and geometry : advances and surveys. Ed.: Giovanni, Falcone, Springer International Publishing, Cham, 205-221, 2017. ISBN: 9783319621807
2016
  1. Dini, P., Karimi, F., Nehaniv, C., Bonivárt, Á., Horváth, G., Muzsnay, Z., Figula, Á., Milkovszki, T., Munro, A., Ruzsnavszky, F.: Further Analysis of Cellular Pathways.
    Biological and Mathematical Basis of InteractionComputing, [s.l.], 98 p., 2016.
  2. Figula, Á.: Lie groups as multiplication groups of topological loops.
    J. Math. Sci. 218 (6), 742-747, 2016.
    Folyóirat-mutatók:
    Q4 Applied Mathematics
    Q3 Mathematics (miscellaneous)
    Q4 Statistics and Probability
  3. Falcone, G., Figula, Á., Strambach, K.: Multiplicative loops of 2-dimensional topological quasifields.
    Commun. Algebr. 44 (6), 2592-2620, 2016.
    Folyóirat-mutatók:
    Q2 Algebra and Number Theory
  4. Falcone, G., Figula, Á.: The action of a compact Lie group on nilpotent Lie algebras of type {{n,2}}.
    Forum Math. 28 (4), 795-806, 2016.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q1 Mathematics (miscellaneous)
2015
  1. Figula, Á.: Quasi-simple Lie groups as multiplication groups of topological loops.
    Adv. Geom. 15 1-22, 2015.
    Folyóirat-mutatók:
    Q3 Geometry and Topology
  2. Figula, Á., Kvaratskhelia, V.: Some numerical characteristics of Sylvester and Hadamard matrices.
    Publ. Math. Debrecen. Vol 86 (1-2), 149-168, 2015.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
  3. Figula, Á., Lattuca, M.: Three-dimensional topological loops with nilpotent multiplication groups.
    J. Lie Theory. 25 (3), 787-805, 2015.
    Folyóirat-mutatók:
    Q3 Algebra and Number Theory
2014
  1. Figula, Á., Halasi, Z., Horváth, G., Podoski, K.: Examples Based on the Chevalley correspondence between Lie Groups and SNAGs.
    Biological and Mathematical Basis of InteractionComputing, [s.l.], 54 p., 2014.
  2. Figula, Á.: Multiplication groups of topological loops.
    J. Math. Sci. 197 (6), 735-740, 2014.
    Folyóirat-mutatók:
    Q4 Applied Mathematics
    Q3 Mathematics (miscellaneous)
    Q4 Statistics and Probability
2013
  1. Figula, Á.: Multiplication groups of topological loops.
    J. Math. Sci. 193 (3), 428-432, 2013.
    Folyóirat-mutatók:
    Q3 Applied Mathematics
    Q3 Mathematics (miscellaneous)
    Q4 Statistics and Probability
  2. Figula, Á.: Octonions.
    In: Proceedings of the 1st BIOMICS Summer Workshop / eds Paolo Dini, Gábor Horváth, University of Debrecen, Debrecen, 41-50, 2013.
  3. Figula, Á.: Three-dimensional topological loops with solvable multiplication groups.
    Commun. Algebr. 41 1601-1629, 2013.
    Folyóirat-mutatók:
    Q2 Algebra and Number Theory
2011
  1. Figula, Á., Strambach, K.: Extensions of groups by weighted Steiner loops.
    Results Math. 59 (3/4), 251-278, 2011.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q2 Mathematics (miscellaneous)
  2. Figula, Á.: On the multiplication group of three-dimensional topological loops.
    J. Lie Theory. 21 (2), 385-415, 2011.
    Folyóirat-mutatók:
    Q4 Algebra and Number Theory
  3. Figula, Á.: The multiplication groups of topological loops.
    In: Proceedings of the International Conference Modern Algebra and its Applications. Ed.: A. Lashkhi, Georgian Technical University, Georgia, 90-96, 2011. ISBN: 9789941037269
  4. Figula, Á.: Three-dimensional loops as sections in a four-dimensional solvable Lie group.
    In: Iscia Group Theory 2010 : Proceedings of the conference / edited by Mariagrazia Bianchi, Patrizia Longobardi, Mercede Maj, Carlo Maria Scoppola, World Scientific Publishing Company, Imperial College Press, London, 13, 2011. ISBN: 9789814350389
2010
  1. Figula, Á., Száz, Á.: Graphical relationships between the infimum and intersection convolutions.
    Math. Pannon. 21 (1), 23-35, 2010.
  2. Figula, Á.: Topological loops with three-dimensional solvable left translation group.
    Aequ. Math. 79 (1/2), 83-97, 2010.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q2 Discrete Mathematics and Combinatorics
    Q2 Mathematics (miscellaneous)
2009
  1. Figula, Á., Strambach, K.: Loops on spheres having a compact-free inner mapping group.
    Monatsh. Math. 156 (2), 123-140, 2009.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  2. Figula, Á., Strambach, K.: Subloop incompatible Bol loops.
    Manuscripta Math. 130 (2), 183-199, 2009.
    Folyóirat-mutatók:
    Q1 Mathematics (miscellaneous)
  3. Figula, Á.: The multiplication groups of 2-dimensional topological loops.
    J. Number Theory. 12 (3), 419-429, 2009.
    Folyóirat-mutatók:
    Q1 Algebra and Number Theory
2007
  1. Figula, Á.: 3-dimensional Bol loops corresponding to solvable Lie triple systems.
    Publ. Math.-Debr. 70 (1-2), 59-101, 2007.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
  2. Figula, Á., Strambach, K.: Loops which are semidirect products of groups.
    Acta Math. Hung. 114 (3), 247-266, 2007.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
2006
  1. Figula, Á.: Affine reductive spaces of small dimension and left A-loops.
    Results Math. 49 (1/2), 45-79, 2006.
  2. Figula, Á.: Bol loops as sections in semi-simple Lie groups of small dimension.
    Manuscr. math. 121 (3), 367-384, 2006.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
2005
  1. Figula, Á.: 3-dimensional Bol loops as sections in non-solvable Lie groups.
    Forum Math. 17 (3), 431-460, 2005.
    Folyóirat-mutatók:
    Q1 Applied Mathematics
    Q1 Mathematics (miscellaneous)
  2. Figula, Á.: 3-dimensional loops on non-solvable reductive spaces.
    Adv. Geom. 5 (3), 399-428, 2005.
    Folyóirat-mutatók:
    Q2 Geometry and Topology
2004
  1. Figula, Á., Strambach, K.: Affine extensions of loops.
    Abh. Math. Semin. Univ. Hamburg. 74 (1), 151-162, 2004.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
2003
  1. Figula, Á.: 3-dimensional Bol loops corresponding to non-solvable Lie groups.
    Naturwissentschaftlichen Fakultaeten der Universitaet Erlangen-Nürnberg, Erlangen, 62 p., 2003.
2000
  1. Figula, Á.: Geodesic loops.
    J. Lie Theory. 10 455-461, 2000.
    Folyóirat-mutatók:
    Q3 Algebra and Number Theory
feltöltött közlemény: 69 Open Access: 21
https://tudoster.idea.unideb.hu
A szolgáltatást nyújtja: DEENK