Tudóstér: Boros Zoltán publikációi

PDF
-
szűkítés
feltöltött közlemény: 43 Open Access: 13
2024
  1. Boros, Z., Menzer, R.: An alternative equation for generalized monomials involving measure.
    Publ. Math. Debr. 104 (1-2), 171-183, 2024.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous) (2023)
  2. Boros, Z., Tóth, P.: Strong geometric derivatives.
    J. Math. Anal. Appl. 538 (1), 1-19, 2024.
    Folyóirat-mutatók:
    Q1 Analysis (2023)
    Q2 Applied Mathematics (2023)
2023
  1. Boros, Z., Menzer, R.: An Alternative Equation for Generalized Polynomials of Degree Two.
    Ann. Math. Silesianae. [Epub ahead of print]2023.
  2. Boros, Z., Lovas, R., Pasteczka, P.: Correction to: There is at most one continuous invariant mean.
    Aequ. Math. 97 (4), 883-885, 2023.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q2 Discrete Mathematics and Combinatorics
    Q2 Mathematics (miscellaneous)
  3. Boros, Z., Garda-Mátyás, E.: Quadratic functions fulfilling an additional condition along the hyperbola xy = 1.
    Aequ. Math. 97 (5-6), 1141-1155, 2023.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q2 Discrete Mathematics and Combinatorics
    Q2 Mathematics (miscellaneous)
  4. Abayomi, E., Ali, A., Bessenyei, M., Boros, Z., Chmielewska, K., Chudziak, J., Gát, G., Gilányi, A., Grünwald, R., Gselmann, E., Iqbal, M., Kiss, T., Łukasik, R., Maslyuchenko, O., Menzer, R., Molnár, G., Olbryś, A., Páles, Z., Pénzes, E., Pieszczek, M., Sablik, M., Székelyhidi, L., Szostok, T., Tóth, N., Tóth, P., Wójcik, S., Zürcher, T.: Report of Meeting: The Twenty-second Debrecen-Katowice Winter Seminar on Functional Equations and Inequalities Hajdúszoboszló (Hungary), February 1-4, 2023.
    Ann. Math. Sil. 37 (2), 315-334, 2023.
2022
  1. Boros, Z., Menzer, R.: An alternative equation for generalized monomials.
    Aequ. Math. 97 113-120, 2022.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q2 Discrete Mathematics and Combinatorics
    Q2 Mathematics (miscellaneous)
  2. Boros, Z., Garda-Mátyás, E.: Conditional equations for monomial functions.
    Publ. Math. Debr. 100 (3-4), 263-276, 2022.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  3. Boros, Z., Tóth, P.: Interval Chains and Completeness in Ultrapowers of Ordered Sets.
    Math. Pannon. 28_NS2 (1), 24-31, 2022.
  4. Burai, P., Bessenyei, M., Boros, Z., Chmieliński, J., Chudziak, J., Fazekas, B., Ger, R., Gselmann, E., Iqbal, M., Łukasik, R., Maslyuchenko, O., Menzer, R., Molnár, G., Olbryś, A., Pasteczka, P., Pénzes, E., Sablik, M., Sikorska, J., Székelyhidi, L., Szokol, P., Szostok, T., Tóth, P., Zürcher, T.: Report of Meeting: The Twenty-first Katowice-Debrecen Winter Seminar on Functional Equations and Inequalities Brenna (Poland), February 2-5, 2022.
    International Journal of Cardiology. 36 (1), 92-105, 2022.
2021
  1. Boros, Z., Tóth, P.: Interval chains and completeness in ultrapowers of ordered sets.
    University of Debrecen, Institute of Mathematics and Faculty of Informatics, Debrecen, 10 p., 2021.
2019
  1. Boros, Z., Száz, Á.: Infimum problems derived from the proofs of some generalized Schwarz inequalities.
    Teach. math. comput. sci. 17 (1), 41-57, 2019.
2018
  1. Boros, Z., Garda-Mátyás, E.: Conditional equations for quadratic functions.
    Acta Math. Hung. 154 (2), 389-401, 2018.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
2017
  1. Boros, Z., Nagy, N.: Approximate convexity with respect to a subfield.
    Acta Math. Hung. 152 (2), 464-472, 2017.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  2. Boros, Z., Száz, Á.: Generalized Schwarz inequalitiesfor generalized semi-inner products on groupoidscan be derived from an equality.
    Novi Sad J. Math. 47 (1), 177-188, 2017.
    Folyóirat-mutatók:
    Q4 Mathematics (miscellaneous)
2016
  1. Boros, Z., Wlodzimierz, F., Kutas, P.: A regularity condition for quadratic functions involving the unit circle.
    Publ. Math. Debr. 89 (3), 297-306, 2016.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
2015
  1. Boros, Z., Fechner, W.: An alternative equation for polynomial functions.
    Aequ. Math. 89 (1), 17-22, 2015.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q1 Discrete Mathematics and Combinatorics
    Q1 Mathematics (miscellaneous)
  2. Boros, Z., Nagy, N.: Generalized Rolewicz theorem for convexity of higher order.
    Math. Inequal. Appl. 18 (4), 1275-1281, 2015.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q2 Mathematics (miscellaneous)
2013
  1. Boros, Z., Nagy, N.: Approximately convex functions.
    Annales Univ. Sci. Budapest., Sect. Comp. 40 143-150, 2013.
2010
  1. Boros, Z., Gselmann, E.: Hyers-Ulam stability of derivations and linear functions.
    Aequ. Math. 80 (1-2), 13-25, 2010.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q2 Discrete Mathematics and Combinatorics
    Q2 Mathematics (miscellaneous)
2008
  1. Boros, Z.: An inequality for the Takagi function.
    Math. Inequal. Appl. 11 (4), 757-765, 2008.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q2 Mathematics (miscellaneous)
  2. Boros, Z., Száz, Á.: Infimum and supremum completeness properties of ordered sets without axioms.
    An. St. Univ. Ovidius Constanta, Ser. Mat. 16 (2), 31-37, 2008.
  3. Boros, Z., Száz, Á.: Reflexivity, transitivity, symmetry and anti-symmetry of the intersection convolution of relations.
    Rostock. Math. Kolloq. 63 55-62, 2008.
2006
  1. Boros, Z., Daróczy, Z.: A composite functional equation with additive solutions.
    Publ. Math. Debrecen. 69 (1-2), 245-253, 2006.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
  2. Boros, Z., Páles, Z.: Q-subdifferential of Jensen-convex functions.
    J. Math. Anal. Appl. 321 (1), 99-113, 2006.
    Folyóirat-mutatók:
    Q1 Analysis
    Q1 Applied Mathematics
2005
  1. Boros, Z., Erdei, P.: A conditional equation for additive functions.
    Aequ. Math. 70 (3), 309-313, 2005.
    Folyóirat-mutatók:
    Q3 Applied Mathematics
    Q4 Discrete Mathematics and Combinatorics
    Q3 Mathematics (miscellaneous)
  2. Boros, Z., Száz, Á.: Finite and conditional completeness properties of generalized ordered sets.
    Rostock. Math. Kolloq. 59 75-86, 2005.
2004
  1. Boros, Z.: Systems of generalized translation equations on a restricted domain.
    Aequ. Math. 67 (1-2), 106-116, 2004.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q3 Discrete Mathematics and Combinatorics
    Q2 Mathematics (miscellaneous)
2002
  1. Boros, Z.: Stability of the Multiplicative Cauchy Functional Equation in Ordered Fields.
    In: Functional Equations : Results and Advances. Ed.: Zoltán Daróczy, Zsolt Páles, Springer, Boston, 91-98, 2002, (Advances in Mathematics ; 3.) ISBN: 9781441952103
2001
  1. Boros, Z.: Strongly Q-differentiable functions.
    Real Anal. Exch. 27 (1), 17-25, 2001.
2000
  1. Boros, Z., Páles, Z., Volkmann, P.: On stability for the Jensen equation on intervals.
    Aequ. Math. 60 (3), 291-297, 2000.
    Folyóirat-mutatók:
    Q3 Applied Mathematics
    Q3 Discrete Mathematics and Combinatorics
    Q3 Mathematics (miscellaneous)
  2. Boros, Z.: Stability of the Cauchy equation in ordered fields.
    Math. Pannon. 11 (2), 191-197, 2000.
1999
  1. Aczél, J., Boros, Z., Heller, J., Ng, C.: Functional Equations in Binocular Space Perception.
    J. Math. Psychol. 43 (1), 71-101, 1999.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q1 Psychology (miscellaneous)
  2. Boros, Z., Száz, Á.: Some number-theoretic applications of the smallest denominator function.
    Acta Math. Acad. Paedagog. Nyíregyh. 15 19-26, 1999.
    Folyóirat-mutatók:
    Q4 Education
    Q4 Mathematics (miscellaneous)
1998
  1. Boros, Z.: Regular functions that preserve digital representation.
    Publ. Math. Debr. 52 (3-4), 309-316, 1998.
  2. Boros, Z., Száz, Á.: The smallest denominator function and the Riemann function.
    Acta Math. Acad. Paedagog. Nyíregyh. 14 1-17, 1998.
1996
  1. Boros, Z.: Representation of vectors in generalized number systems.
    Grazer math. Ber. 327 7-10, 1996.
1995
  1. Száz, Á., Boros, Z.: A legkisebb nevezőjű függvény további alkalmazásai.
    Department of Mathematics and Informatics Lajos Kossuth University, Debrecen, 7 p., 1995.
  2. Száz, Á., Boros, Z.: Függvények, amelyeknek a Riemann-függvényt meg kellene előzniük.
    Department of Mathematics and Informatics Lajos Kossuth University, Debrecen, 17 p., 1995.
  3. Boros, Z.: Sequences of connected spectrum and the Vilenkin group.
    Publ. Math. Debr. 47 (3-4), 403-410, 1995.
1994
  1. Boros, Z.: Note on multilinear functions and algebraic dependence.
    Results Math. 26 (3-4), 225-228, 1994.
  2. Boros, Z.: On completely P-additive functions with respect to interval-filling sequences of type P.
    Acta Math. Hung. 65 (1), 17-26, 1994.
1993
  1. Boros, Z.: Interval-filling sequences with respect to a finite set of real coefficients.
    Publ. Math. Debrecen. 43 (1-2), 61-68, 1993.
feltöltött közlemény: 43 Open Access: 13
https://tudoster.idea.unideb.hu
A szolgáltatást nyújtja: DEENK