Tudóstér: Boros Zoltán publikációi

PDF
-
szűkítés
feltöltött közlemény: 37 Open Access: 7
2022
  1. Boros, Z., Menzer, R.: An alternative equation for generalized monomials.
    Aequ. Math. 97 113-120, 2022.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q2 Discrete Mathematics and Combinatorics
    Q2 Mathematics (miscellaneous)
  2. Boros, Z., Iqbal, M., Száz, Á.: A relational improvement of a true particular case of Fierro's maximality theorem.
    Filomat. 36 (20), 7091-7101, 2022.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
  3. Boros, Z., Garda-Mátyás, E.: Conditional equations for monomial functions.
    Publ. Math. Debr. 100 (3-4), 263-276, 2022.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  4. Boros, Z., Tóth, P.: Interval Chains and Completeness in Ultrapowers of Ordered Sets.
    Math. Pannon. 28_NS2 (1), 24-31, 2022.
2021
  1. Boros, Z., Tóth, P.: Interval chains and completeness in ultrapowers of ordered sets.
    University of Debrecen, Institute of Mathematics and Faculty of Informatics, Debrecen, 10 p., 2021.
2019
  1. Boros, Z., Száz, Á.: Infimum problems derived from the proofs of some generalized Schwarz inequalities.
    Teach. math. comput. sci. 17 (1), 41-57, 2019.
2018
  1. Boros, Z., Garda-Mátyás, E.: Conditional equations for quadratic functions.
    Acta Math. Hung. 154 (2), 389-401, 2018.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
2017
  1. Boros, Z., Nagy, N.: Approximate convexity with respect to a subfield.
    Acta Math. Hung. 152 (2), 464-472, 2017.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  2. Boros, Z., Száz, Á.: Generalized Schwarz inequalitiesfor generalized semi-inner products on groupoidscan be derived from an equality.
    Novi Sad J. Math. 47 (1), 177-188, 2017.
    Folyóirat-mutatók:
    Q4 Mathematics (miscellaneous)
2016
  1. Boros, Z., Wlodzimierz, F., Kutas, P.: A regularity condition for quadratic functions involving the unit circle.
    Publ. Math. Debr. 89 (3), 297-306, 2016.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
2015
  1. Boros, Z., Fechner, W.: An alternative equation for polynomial functions.
    Aequ. Math. 89 (1), 17-22, 2015.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q1 Discrete Mathematics and Combinatorics
    Q1 Mathematics (miscellaneous)
  2. Boros, Z., Nagy, N.: Generalized Rolewicz theorem for convexity of higher order.
    Math. Inequal. Appl. 18 (4), 1275-1281, 2015.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q2 Mathematics (miscellaneous)
2013
  1. Boros, Z., Nagy, N.: Approximately convex functions.
    Annales Univ. Sci. Budapest., Sect. Comp. 40 143-150, 2013.
2010
  1. Boros, Z., Gselmann, E.: Hyers-Ulam stability of derivations and linear functions.
    Aequ. Math. 80 (1-2), 13-25, 2010.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q2 Discrete Mathematics and Combinatorics
    Q2 Mathematics (miscellaneous)
2008
  1. Boros, Z.: An inequality for the Takagi function.
    Math. Inequal. Appl. 11 (4), 757-765, 2008.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q2 Mathematics (miscellaneous)
  2. Boros, Z., Száz, Á.: Infimum and supremum completeness properties of ordered sets without axioms.
    An. St. Univ. Ovidius Constanta, Ser. Mat. 16 (2), 31-37, 2008.
  3. Boros, Z., Száz, Á.: Reflexivity, transitivity, symmetry and anti-symmetry of the intersection convolution of relations.
    Rostock. Math. Kolloq. 63 55-62, 2008.
2006
  1. Boros, Z., Daróczy, Z.: A composite functional equation with additive solutions.
    Publ. Math. Debrecen. 69 (1-2), 245-253, 2006.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
  2. Boros, Z., Páles, Z.: Q-subdifferential of Jensen-convex functions.
    J. Math. Anal. Appl. 321 (1), 99-113, 2006.
    Folyóirat-mutatók:
    Q1 Analysis
    Q1 Applied Mathematics
2005
  1. Boros, Z., Erdei, P.: A conditional equation for additive functions.
    Aequ. Math. 70 (3), 309-313, 2005.
    Folyóirat-mutatók:
    Q3 Applied Mathematics
    Q4 Discrete Mathematics and Combinatorics
    Q3 Mathematics (miscellaneous)
  2. Boros, Z., Száz, Á.: Finite and conditional completeness properties of generalized ordered sets.
    Rostock. Math. Kolloq. 59 75-86, 2005.
2004
  1. Boros, Z.: Systems of generalized translation equations on a restricted domain.
    Aequ. Math. 67 (1-2), 106-116, 2004.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q3 Discrete Mathematics and Combinatorics
    Q2 Mathematics (miscellaneous)
2002
  1. Boros, Z.: Stability of the Multiplicative Cauchy Functional Equation in Ordered Fields.
    In: Functional Equations : Results and Advances. Ed.: Zoltán Daróczy, Zsolt Páles, Springer, Boston, 91-98, 2002, (Advances in Mathematics ; 3.) ISBN: 9781441952103
2001
  1. Boros, Z.: Strongly Q-differentiable functions.
    Real Anal. Exch. 27 (1), 17-25, 2001.
2000
  1. Boros, Z., Páles, Z., Volkmann, P.: On stability for the Jensen equation on intervals.
    Aequ. Math. 60 (3), 291-297, 2000.
    Folyóirat-mutatók:
    Q3 Applied Mathematics
    Q3 Discrete Mathematics and Combinatorics
    Q3 Mathematics (miscellaneous)
  2. Boros, Z.: Stability of the Cauchy equation in ordered fields.
    Math. Pannon. 11 (2), 191-197, 2000.
1999
  1. Aczél, J., Boros, Z., Heller, J., Ng, C.: Functional Equations in Binocular Space Perception.
    J. Math. Psychol. 43 (1), 71-101, 1999.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q1 Psychology (miscellaneous)
  2. Boros, Z., Száz, Á.: Some number-theoretic applications of the smallest denominator function.
    Acta Math. Acad. Paedagog. Nyíregyh. 15 19-26, 1999.
    Folyóirat-mutatók:
    Q4 Education
    Q4 Mathematics (miscellaneous)
1998
  1. Boros, Z.: Regular functions that preserve digital representation.
    Publ. Math. Debr. 52 (3-4), 309-316, 1998.
  2. Boros, Z., Száz, Á.: The smallest denominator function and the Riemann function.
    Acta Math. Acad. Paedagog. Nyíregyh. 14 1-17, 1998.
1996
  1. Boros, Z.: Representation of vectors in generalized number systems.
    Grazer math. Ber. 327 7-10, 1996.
1995
  1. Száz, Á., Boros, Z.: A legkisebb nevezőjű függvény további alkalmazásai.
    Department of Mathematics and Informatics Lajos Kossuth University, Debrecen, 7 p., 1995.
  2. Száz, Á., Boros, Z.: Függvények, amelyeknek a Riemann-függvényt meg kellene előzniük.
    Department of Mathematics and Informatics Lajos Kossuth University, Debrecen, 17 p., 1995.
  3. Boros, Z.: Sequences of connected spectrum and the Vilenkin group.
    Publ. Math. Debr. 47 (3-4), 403-410, 1995.
1994
  1. Boros, Z.: Note on multilinear functions and algebraic dependence.
    Results Math. 26 (3-4), 225-228, 1994.
  2. Boros, Z.: On completely P-additive functions with respect to interval-filling sequences of type P.
    Acta Math. Hung. 65 (1), 17-26, 1994.
1993
  1. Boros, Z.: Interval-filling sequences with respect to a finite set of real coefficients.
    Publ. Math. Debrecen. 43 (1-2), 61-68, 1993.
feltöltött közlemény: 37 Open Access: 7
https://tudoster.idea.unideb.hu
A szolgáltatást nyújtja: DEENK