EN HU

Muzsnay Zoltán

Név: Muzsnay Zoltán
További profilok: MTMT
Fokozat:
  • PhD, Université Paul Sabatier (Toulouse, Franciaország) (1997)
  • Habilitáció, Debreceni Egyetem (2006)
  • MTA doktora, MTA (2022)

Teljes publikációs lista

2024
1.
Elgendi, S. G. A. A., Muzsnay, Z.: The geometry of geodesic invariant functions and applications to Landsberg surfaces.
MATH. 9 (9), 23617-23631, 2024.
Folyóirat-mutatók:
Q2 Mathematics (miscellaneous) (2023)
2.
Asma, M., Muzsnay, Z.: The Holonomy of Spherically Symmetric Projective Finsler Metrics of Constant Curvature.
J. Geom. Anal. 34 (8), 1-15, (cikkazonosító: 257), 2024.
Folyóirat-mutatók:
Q1 Geometry and Topology (2023)
2023
3.
Elgendi, S. G. A. A., Muzsnay, Z.: Metrizability of Holonomy Invariant Projective Deformation of Sprays.
Can. Math. Bul.-Bul. Can. Math. 66 (3), 701-714, 2023.
Folyóirat-mutatók:
Q2 Mathematics (miscellaneous)
2021
4.
Hubicska, B. A., Matveev, V. S., Muzsnay, Z.: Almost All Finsler Metrics have Infinite Dimensional Holonomy Group.
J. Geom. Anal. 31 (6), 6067-6079, 2021.
Folyóirat-mutatók:
Q1 Geometry and Topology
2020
5.
Hubicska, B. A., Muzsnay, Z.: Tangent Lie Algebra of a Diffeomorphism Group and Application to Holonomy Theory.
J. Geom. Anal. 30, 107-123, 2020.
Folyóirat-mutatók:
Q1 Geometry and Topology
6.
Hubicska, B. A., Muzsnay, Z.: The holonomy group of locally projectively flat Randers two-manifolds of constant curvature.
Differ. Geom. Appl. 73, 1-9, 2020.
Folyóirat-mutatók:
Q2 Analysis
Q2 Computational Theory and Mathematics
Q3 Geometry and Topology
7.
Figula, Á., Horváth, G., Milkovszki, T., Muzsnay, Z.: The Lie symmetry group of the general Liénard-type equation.
J. Nonlinear Math. Phys. 27 (2), 185-198, 2020.
Folyóirat-mutatók:
Q2 Mathematical Physics
Q3 Statistical and Nonlinear Physics
2019
8.
Milkovszki, T., Muzsnay, Z.: About the projective Finsler metrizability: First steps in the non-isotropic case.
Balk. J. Geom. Appl. 24 (2), 25-41, 2019.
Folyóirat-mutatók:
Q3 Geometry and Topology
9.
Hubicska, B. A., Muzsnay, Z.: Holonomy in the quantum navigation problem.
Quantum Inf. Process. 18 (10), 1-10, 2019.
Folyóirat-mutatók:
Q2 Electrical and Electronic Engineering
Q2 Electronic, Optical and Magnetic Materials
Q2 Modeling and Simulation
Q2 Signal Processing
Q2 Statistical and Nonlinear Physics
Q2 Theoretical Computer Science
2018
10.
Muzsnay, Z.: On the linearizability of 3-webs: End of controversy.
C. R. Math. 356 (1), 97-99, 2018.
Folyóirat-mutatók:
Q2 Mathematics (miscellaneous)
2017
11.
Elgendi, S. G. A. A., Muzsnay, Z.: Freedom of h (2)-variationality and metrizability of sprays.
Differ. Geom. Appl. 54 (Part), 194-207, 2017.
Folyóirat-mutatók:
Q2 Analysis
Q2 Computational Theory and Mathematics
Q2 Geometry and Topology
12.
Muzsnay, Z., Nagy, P. T.: Holonomy theory of Finsler manifolds.
In: Lie groups, differential equations, and geometry : advances and surveys / Giovanni Falcone, Springer International Publishing, UNIPA Springer Series, 243-285, 2017, (UNIPA Springer Series, ISSN 2366-7524, 2366-7516 ) ISBN: 9783319621807
13.
Muzsnay, Z.: Két pont között legrövidebb út az egyenes?: Kérdezzük meg Fa Nándort....
Érintő. 3, 1-3, 2017.
14.
Milkovszki, T., Muzsnay, Z.: On the projective Finsler metrizability and the integrability of Rapcsák equation.
Czech. Math. J. 67 (2), 469-495, 2017.
Folyóirat-mutatók:
Q3 Mathematics (miscellaneous)
2016
15.
Dini, P., Karimi, F., Nehaniv, C. L., Bonivárt, Á., Horváth, G., Muzsnay, Z., Figula, Á., Milkovszki, T., Munro, A. J., Ruzsnavszky, F.: Further Analysis of Cellular Pathways.
Biological and Mathematical Basis of InteractionComputing, [s.l.], 98 p., 2016.
16.
Bucataru, I., Milkovszki, T., Muzsnay, Z.: Invariant Metrizability and Projective Metrizability on Lie Groups and Homogeneous Spaces.
Mediterr. J. Math. 13 (6), 4567-4580, 2016.
Folyóirat-mutatók:
Q2 Mathematics (miscellaneous)
17.
Bucataru, I., Muzsnay, Z.: Non-existence of Funk functions for Finsler spaces of non-vanishing scalar flag curvature = Non-existence de fonctions de Funk pour les espaces de Finsler de courbure scalaire non nulle.
C. R. Math. 354 (6), 619-622, 2016.
Folyóirat-mutatók:
Q2 Mathematics (miscellaneous)
2015
18.
Muzsnay, Z., Nagy, P. T.: Finsler 2-manifolds with maximal holonomy group of infinite dimension.
Differ. Geom. Appl. 39, 1-9, 2015.
Folyóirat-mutatók:
Q2 Analysis
Q2 Computational Theory and Mathematics
Q2 Geometry and Topology
2014
19.
Muzsnay, Z., Nagy, P. T.: Characterization of projective Finsler manifolds of constant curvature having infinite dimensional holonomy group.
Publ. Math.-Debr. 84 (1-2), 17-28, 2014.
Folyóirat-mutatók:
Q2 Mathematics (miscellaneous)
20.
Bucataru, I., Muzsnay, Z.: Finsler metrizable isotropic sprays and Hilbert's fourth problem.
J. Aust. Math. Soc. 97 (1), 27-47, 2014.
Folyóirat-mutatók:
Q3 Mathematics (miscellaneous)
2013
21.
Bucataru, I., Muzsnay, Z.: Sprays metrizable by Finsler functions of constant flag curvature.
Differ. Geom. Appl. 31 (3), 405-415, 2013.
Folyóirat-mutatók:
Q2 Analysis
Q2 Computational Theory and Mathematics
Q2 Geometry and Topology
2012
22.
Nagy, P. T., Muzsnay, Z.: Finsler manifolds with non-Riemannian holonomy.
Houst. J. Math. 38 (1), 77-92, 2012.
Folyóirat-mutatók:
Q2 Mathematics (miscellaneous)
23.
Muzsnay, Z., Nagy, P. T.: Holonomy of Finsler manifolds.
In: Proceeding of the 47th Symposium on Finsler Geometry. Szerk.: Society of Finsler Geometry, Society of Finsler Geometry, Kagoshima, 56-61, 2012.
24.
Bucataru, I., Muzsnay, Z.: Projective and Finsler metrizability: parameterization-rigidity of the geodesics.
Int. J. Math. 23 (9), 1250099-, 2012.
Folyóirat-mutatók:
Q2 Mathematics (miscellaneous)
25.
Muzsnay, Z., Nagy, P. T.: Projectively flat Finsler manifolds with infinite dimensional holonomy.
Forum Math. 0 (0), 1-20, 2012.
Folyóirat-mutatók:
Q2 Applied Mathematics
Q1 Mathematics (miscellaneous)
DEENK Debreceni Egyetem
© 2012 Debreceni Egyetem