Ha kapcsolatba szeretne lépni a Tudóstér adminisztrátoraival, kérjük töltse ki az alábbi űrlapot, vagy küldjön e-mailt a publikacioklib.unideb.hu címre.
A képen látható kód
Bejelentkezés
A Tudóstér funkcióinak nagy része bejelentkezés nélkül is elérhető. Bejelentkezésre az alábbi műveletekhez van szükség:
Bérczes, A., Bugeaud, Y., Győry, K., Mello, J., Ostafe, A., Sha, M.: Explicit bounds for the solutions of superelliptic equations over number fields. Forum Math. 37 (1), : 135-158, 2025.
Győry, K., Sárközy, A., Hajdu, L.: On additive and multiplicative decompositions of sets of integers composed from a given set of primes, II (Multiplicative decompositions). Acta Arith. 210, 191-204, 2023.
Evertse, J. H., Győry, K.: Effective results and methods for diophantine equations over finitely generated domains. Cambridge University Press, Cambridge, 240 p., 2022. ISBN: 9781009005852
Győry, K., Hajdu, L., Sárközy, A.: On additive and multiplicative decompositions of sets of integers composed from a given set of primes, I (Additive decompositions). Acta Arith. 202 (1), 29-42, 2022.
Győry, K., Hajdu, L., Sárközy, A.: On additive and multiplicative decompositions of sets of integers with restricted prime factors, II: Smooth numbers and generalizations. Indag. Math.-New Ser. 32 (4), 813-823, 2021.
Győry, K., Hajdu, L., Sárközy, A.: On additive and multiplicative decompositions of sets of integers with restricted prime factors, I. (Smooth numbers). Indag. Math.-New Ser. 32 (2), 365-374, 2021.
Győry, K.: Corrigendum to "Bounds for the solutions of S-unit equations and decomposable form equations II": [Publ. Math. Debrecen 94 (2019), 507-526]. Publ. Math. Debr. 97 (3-4), 525, 2020.
Evertse, J. H., Győry, K., Stewart, C. L.: Mahler's Work on Diophantine Equations and Subsequent Developments. Doc Math. Ext.Vol. Mahl.Sel., 149-171, 2019.
Bertók, C., Győry, K., Hajdu, L., Schinzel, A.: On the smallest number of terms of vanishing sums of units in number fields. J. Number Theory. 192, 328-347, 2018.
Bugeaud, Y., Evertse, J. H., Győry, K.: S-parts of values of univariate polynomials, binary forms and decomposable forms at integral points. Acta Arith. 184 (2), 151-185, 2018.
Evertse, J. H., Győry, K.: Effective results for discriminant equations over finitely generated integral domains. In: Number Theory-Diophantine problems uniform distribution and applications. Ed.: Christian Elsholtz, Peter Grabner, Springer, Cham, 237-256, 2017. ISBN: 9783319553566