Jelenlegi hely

Gát György

Név: Gát György
További profilok: MTMT
Fokozat
  • DSc, MTA (2009)
Szakterület: matematikus

Teljes publikációs lista

A lista áttöltése az MTMT rendszerébe
Hiányzó közlemények feltöltése
Hitelesített Publikációs Lista igénylése
OA letöltési statisztika megtekintése
Feltöltött közlemény:
21
DEA-ban:
21
OA:
1
Publikációs időszak:
2015-2021
2021
  1. Anas, A., Gát, G.: Almost everywhere convergence of Cesáro means of two variable Walsh-Fourier series with varying parameters.
    Ukr. Math. J. 73 (3), 337-358, 2021.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  2. Gát, G., Lucskai, G.: Almost everywhere convergence of Riesz means of one-dimensional Fourier series on the group of 2-adic integers.
    Novi Sad J. Math. [Epub ahead of print] 1-14, 2021.
    Folyóirat-mutatók:
    Q4 Mathematics (miscellaneous)
  3. Gát, G., Tilahun, A.: Multi-parameter setting (C,α) means with respect to one dimensional Vilenkin system.
    Filomat. 35 (12), 4121-4133, 2021.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
2020
  1. Gát, G., Tilahun, A.: On almost everywhere convergence of the generalized Marcienkiwicz means with respect to two dimensional Vilenkin-like systems.
    Miskolc Math. Notes. 21 (2), 823-840, 2020.
    Folyóirat-mutatók:
    Q3 Algebra and Number Theory
    Q3 Analysis
    Q2 Control and Optimization
    Q3 Discrete Mathematics and Combinatorics
    Q3 Numerical Analysis
2019
  1. Gát, G.: Cesaro Means of Subsequences of Partial Sums of Trigonometric Fourier Series.
    Constr. Approx. 49 (1), 59-101, 2019.
    Folyóirat-mutatók:
    Q2 Analysis
    Q2 Computational Mathematics
    Q2 Mathematics (miscellaneous)
  2. Gát, G., Goginava, U.: Convergence of a Subsequence of Triangular Partial Sums of Double Walsh-Fourier Series.
    J. Contemp. Math. Anal. 54 (4), 210-215, 2019.
    Folyóirat-mutatók:
    Q4 Analysis
    Q4 Applied Mathematics
    Q4 Control and Optimization
  3. Gát, G., Lucskai, G.: Estimation on the Walsh-Fejer and Walsh logarithmic kernels.
    Publ. Math. Debr. 95 (3-4), 415-435, 2019.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  4. Gát, G., Goginava, U.: Maximal operators of Cesàro means with varying parameters of Walsh-Fourier series.
    Acta math. Hung. 159 (2), 653-668, 2019.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  5. Gát, G., Goginava, U.: Norm Convergence of Double Fejér Means on Unbounded Vilenkin Groups.
    Anal. Math. 45 (1), 39-62, 2019.
    Folyóirat-mutatók:
    Q3 Analysis
    Q3 Mathematics (miscellaneous)
2018
  1. Gát, G.: Almost Everywhere Convergence of Fejér Means of Two-dimensional Triangular Walsh-Fourier Series.
    J. Fourier Anal. Appl. 24 (5), 1249-1275, 2018.
    Folyóirat-mutatók:
    Q2 Analysis
    Q2 Applied Mathematics
    Q1 Mathematics (miscellaneous)
  2. Gát, G., Goginava, U.: Almost Everywhere Convergence of Subsequence of Quadratic Partial Sums of Two-Dimensional Walsh-Fourier Series.
    Anal. Math. 44 (1), 73-88, 2018.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
  3. Anas, A., Gát, G.: Convergence of Cesáro means with varying parameters of Walsh-Fourier series.
    Miskolc Math. Notes. 19 (1), 303-317, 2018.
    Folyóirat-mutatók:
    Q4 Algebra and Number Theory
    Q3 Analysis
    Q3 Control and Optimization
    Q4 Discrete Mathematics and Combinatorics
    Q3 Numerical Analysis
  4. Gát, G., Goginava, U.: Subsequences of triangular partial sums of double Fourier series on unbounded Vilenkin groups.
    Filomat. 32 (11), 3769-3778, 2018.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
2017
  1. Gát, G., Goginava, U.: Norm convergence of double Fourier series on unbounded Vilenkin groups.
    Acta math. Hung. 152 (1), 201-216, 2017.
    Folyóirat-mutatók:
    Q2 Mathematics (miscellaneous)
2016
  1. Gát, G., Goginava, U.: Almost everywhere convergence of dyadic triangular-Fejér means of two-dimensional Walsh-Fourier series.
    Math. Inequal. Appl. 19 (2), 401-415, 2016.
    Folyóirat-mutatók:
    Q2 Applied Mathematics
    Q2 Mathematics (miscellaneous)
  2. Gát, G.: Marcinkiewicz-like means of two dimensional Vilenkin-Fourier series.
    Publ. Math. Debr. 89 (3), 331-346, 2016.
    Folyóirat-mutatók:
    Q3 Mathematics (miscellaneous)
  3. Gát, G., Karagulyan, G.: On Convergence Properties of Tensor Products of Some Operator Sequences.
    J. Geom. Anal. 26 (4), 3066-3089, 2016.
    Folyóirat-mutatók:
    D1 Geometry and Topology
  4. Gát, G.: Some recent results on convergence and divergence with respect to Walsh-Fourier series.
    Acta Math. Acad. Paedag. Nyíregyh. 32 (2), 215-223, 2016.
    Folyóirat-mutatók:
    Q4 Education
    Q4 Mathematics (miscellaneous)
2015
  1. Gát, G.: Convergence of Fejér means of integrable functions with respect to weighted Walsh systems.
    Acta Sci. Math. 81 (3-4), 549-560, 2015.
    Folyóirat-mutatók:
    Q4 Analysis
    Q3 Applied Mathematics
  2. Gát, G., Karagulyan, G.: On everywhere divergence of the strong [Phi]-means of Walsh-Fourier series.
    J. Math. Anal. Appl. 421 (1), 206-214, 2015.
    Folyóirat-mutatók:
    Q2 Analysis
    Q1 Applied Mathematics
frissítve: 2022-07-31, 02:18

Tudományos folyóiratcikkek
SCImago besorolása

Tudományos folyóiratcikkek száma: 21
Q1/D1 1 (4.8%)
Q1 3 (14.3%)
Q2 10 (47.6%)
Q3 4 (19%)
Q4 3 (14.3%)
n.a. 1 (4.8%)
-
OK

SCImago kategóriák

Mathematics (20)
Mathematics (miscellaneous) (14)
Analysis (8)
Applied Mathematics (5)
Control and Optimization (3)
Algebra and Number Theory (2)
Discrete Mathematics and Combinatorics (2)
Numerical Analysis (2)
Computational Mathematics (1)
Geometry and Topology (1)
Social Sciences (1)
Education (1)

Közlemények megoszlása
műfaj szerint

Közlemények megoszlása
évszám szerint

Közlemények megoszlása
nyelv szerint

Egyéb társszerzők

Karagulyan, Grigori